Normalized defining polynomial
\( x^{20} - 10 x^{19} + 86 x^{18} - 468 x^{17} + 2186 x^{16} - 8164 x^{15} + 26400 x^{14} - 74414 x^{13} + 180306 x^{12} - 389440 x^{11} + 740054 x^{10} - 1218710 x^{9} + 1791009 x^{8} - 2307508 x^{7} + 2518702 x^{6} - 2490132 x^{5} + 2265462 x^{4} - 1623348 x^{3} + 964152 x^{2} - 615708 x + 244053 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42390388623295510152536086938648576=2^{30}\cdot 3^{10}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{15} - \frac{1}{9} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{4}{9} a^{9} - \frac{4}{9} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{6} + \frac{1}{9} a^{5} + \frac{4}{9} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{207} a^{17} - \frac{5}{207} a^{16} - \frac{5}{69} a^{15} + \frac{20}{207} a^{14} + \frac{3}{23} a^{13} - \frac{4}{69} a^{12} + \frac{8}{23} a^{11} - \frac{98}{207} a^{10} + \frac{62}{207} a^{9} - \frac{2}{9} a^{8} - \frac{77}{207} a^{7} + \frac{73}{207} a^{6} - \frac{17}{207} a^{5} + \frac{2}{23} a^{3} + \frac{8}{69} a^{2} - \frac{10}{23} a$, $\frac{1}{979317} a^{18} - \frac{697}{326439} a^{17} + \frac{32288}{979317} a^{16} + \frac{10058}{979317} a^{15} + \frac{162271}{979317} a^{14} + \frac{5464}{326439} a^{13} - \frac{32480}{326439} a^{12} - \frac{343214}{979317} a^{11} - \frac{485579}{979317} a^{10} - \frac{151318}{326439} a^{9} - \frac{58888}{979317} a^{8} - \frac{162221}{326439} a^{7} + \frac{130567}{326439} a^{6} - \frac{165742}{979317} a^{5} - \frac{14129}{36271} a^{4} - \frac{35848}{108813} a^{3} + \frac{1450}{108813} a^{2} - \frac{48922}{108813} a - \frac{588}{1577}$, $\frac{1}{28743528411520503437162691633214313703} a^{19} + \frac{9334638061043434848452791906078}{28743528411520503437162691633214313703} a^{18} - \frac{19980879413711325383129664904561867}{28743528411520503437162691633214313703} a^{17} + \frac{43248017839988991479167773043386350}{1249718626587847975528812679704970161} a^{16} - \frac{18058958290545188676134376479805245}{187866198768107865602370533550420351} a^{15} - \frac{808725638801072557708862784009384674}{28743528411520503437162691633214313703} a^{14} + \frac{617601920747095034604216537353964437}{9581176137173501145720897211071437901} a^{13} - \frac{4177943396317592676150647481048034166}{28743528411520503437162691633214313703} a^{12} - \frac{2768910706777318753279454320104464296}{28743528411520503437162691633214313703} a^{11} + \frac{544874382290949820257308353568077270}{1512817284816868601955931138590227037} a^{10} - \frac{7715756697646905360016524635432714791}{28743528411520503437162691633214313703} a^{9} + \frac{8751675381363080573360325102147253592}{28743528411520503437162691633214313703} a^{8} - \frac{839786939534250875441763204949894732}{3193725379057833715240299070357145967} a^{7} - \frac{737150313052345032815412607062871942}{1512817284816868601955931138590227037} a^{6} + \frac{4433738970948139078087421863013184359}{28743528411520503437162691633214313703} a^{5} + \frac{1329717927225982931688862727733019981}{3193725379057833715240299070357145967} a^{4} - \frac{1307003648049611184951501704632838578}{3193725379057833715240299070357145967} a^{3} - \frac{49670273799855417259735307825385347}{3193725379057833715240299070357145967} a^{2} + \frac{1326338510831521237662514078132859300}{3193725379057833715240299070357145967} a - \frac{15238325163029033725114417814177166}{46285875058809184278844914063147043}$
Class group and class number
$C_{2}\times C_{2}\times C_{48}$, which has order $192$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15405657.6163 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n141 |
| Character table for t20n141 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 5.5.160801.1, 10.0.2144679823033344.1, 10.10.6434039469100032.1, 10.0.79432586038272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||