Normalized defining polynomial
\( x^{20} - 10 x^{18} - 5 x^{17} + 75 x^{16} + 122 x^{15} - 610 x^{14} - 360 x^{13} + 2990 x^{12} - 1370 x^{11} - 3126 x^{10} - 1950 x^{9} + 9275 x^{8} - 3890 x^{7} + 13900 x^{6} - 34527 x^{5} + 24160 x^{4} - 14740 x^{3} + 24440 x^{2} - 5135 x + 3581 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42375791100781250000000000000000=2^{16}\cdot 5^{23}\cdot 7^{8}\cdot 97^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} + \frac{2}{7} a^{14} + \frac{2}{7} a^{13} - \frac{1}{7} a^{11} - \frac{3}{7} a^{10} - \frac{3}{7} a^{9} + \frac{2}{7} a^{7} - \frac{1}{7} a^{6} + \frac{2}{7} a^{5} + \frac{2}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{17} + \frac{2}{7} a^{15} + \frac{2}{7} a^{14} - \frac{1}{7} a^{12} - \frac{3}{7} a^{11} - \frac{3}{7} a^{10} + \frac{2}{7} a^{8} - \frac{1}{7} a^{7} + \frac{2}{7} a^{6} + \frac{2}{7} a^{5} + \frac{3}{7} a^{4} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{7} a^{18} + \frac{2}{7} a^{15} + \frac{3}{7} a^{14} + \frac{2}{7} a^{13} - \frac{3}{7} a^{12} - \frac{1}{7} a^{11} - \frac{1}{7} a^{10} + \frac{1}{7} a^{9} - \frac{1}{7} a^{8} - \frac{2}{7} a^{7} - \frac{3}{7} a^{6} - \frac{1}{7} a^{5} - \frac{2}{7} a^{4} - \frac{3}{7} a^{3} + \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{3818511267592320163508096645226331447597643} a^{19} - \frac{215211275519879905750696155690593983164611}{3818511267592320163508096645226331447597643} a^{18} + \frac{69456417115603766354430748516899554979244}{3818511267592320163508096645226331447597643} a^{17} - \frac{42371672089104516964799203255406843020797}{3818511267592320163508096645226331447597643} a^{16} - \frac{225648324867484057955555312373952764307725}{3818511267592320163508096645226331447597643} a^{15} - \frac{1032575829296108276002786178468968123995252}{3818511267592320163508096645226331447597643} a^{14} + \frac{145714537628896550672647421415286345438388}{3818511267592320163508096645226331447597643} a^{13} + \frac{848806557985950232253538762065421630453749}{3818511267592320163508096645226331447597643} a^{12} + \frac{675992804302447620355377220050754590729995}{3818511267592320163508096645226331447597643} a^{11} - \frac{1906542859068664609448086911812452379548098}{3818511267592320163508096645226331447597643} a^{10} + \frac{84765052309929912926248403460179773880236}{545501609656045737644013806460904492513949} a^{9} - \frac{1650852852787119662070377845451693650806978}{3818511267592320163508096645226331447597643} a^{8} + \frac{269937257524353210121444489167140129539615}{545501609656045737644013806460904492513949} a^{7} + \frac{502355927647536110036027584814636001361344}{3818511267592320163508096645226331447597643} a^{6} - \frac{1285714747128708484348012863441421416234749}{3818511267592320163508096645226331447597643} a^{5} - \frac{651280285531882178463884139504498385762656}{3818511267592320163508096645226331447597643} a^{4} + \frac{1772895184216701262114449128690607131051495}{3818511267592320163508096645226331447597643} a^{3} - \frac{437351820570331409556860054844434074954951}{3818511267592320163508096645226331447597643} a^{2} - \frac{1881175229983333510709847757129400511721744}{3818511267592320163508096645226331447597643} a - \frac{764398086696702031655813477162527534271598}{3818511267592320163508096645226331447597643}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1633832.53547 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 22 conjugacy class representatives for t20n135 |
| Character table for t20n135 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.2450000.1, 10.10.30012500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |