Normalized defining polynomial
\( x^{20} - 10 x^{19} + 50 x^{18} - 162 x^{17} + 381 x^{16} - 696 x^{15} + 1032 x^{14} - 1242 x^{13} + 1134 x^{12} - 648 x^{11} + 484 x^{9} - 611 x^{8} + 428 x^{7} - 136 x^{6} - 84 x^{5} + 164 x^{4} - 136 x^{3} + 72 x^{2} - 24 x + 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4226880044572534053535744=2^{30}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{18} - \frac{1}{2} a^{15} - \frac{1}{4} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{1554383298904} a^{19} - \frac{6864650097}{777191649452} a^{18} - \frac{44487441741}{388595824726} a^{17} + \frac{8169423812}{194297912363} a^{16} + \frac{507125431207}{1554383298904} a^{15} + \frac{66195900970}{194297912363} a^{14} - \frac{276288245633}{777191649452} a^{13} - \frac{184800390649}{388595824726} a^{12} - \frac{6123867269}{388595824726} a^{11} + \frac{41207207462}{194297912363} a^{10} + \frac{104839430299}{388595824726} a^{9} - \frac{9997615768}{194297912363} a^{8} + \frac{178314392605}{1554383298904} a^{7} - \frac{177414228995}{388595824726} a^{6} + \frac{375518772685}{777191649452} a^{5} - \frac{67427372291}{777191649452} a^{4} + \frac{41845542015}{777191649452} a^{3} + \frac{129295742489}{388595824726} a^{2} + \frac{4923610683}{388595824726} a + \frac{62571449457}{388595824726}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{771012064493}{777191649452} a^{19} - \frac{3608982085647}{388595824726} a^{18} + \frac{8503016068609}{194297912363} a^{17} - \frac{51913716246287}{388595824726} a^{16} + \frac{230431720943411}{777191649452} a^{15} - \frac{99606107761039}{194297912363} a^{14} + \frac{280382920973029}{388595824726} a^{13} - \frac{316206346176265}{388595824726} a^{12} + \frac{128797303891451}{194297912363} a^{11} - \frac{54556994151091}{194297912363} a^{10} - \frac{26282456722782}{194297912363} a^{9} + \frac{74727646526329}{194297912363} a^{8} - \frac{299353923183435}{777191649452} a^{7} + \frac{42302443066471}{194297912363} a^{6} - \frac{10056039403453}{388595824726} a^{5} - \frac{17390313661730}{194297912363} a^{4} + \frac{42986294189331}{388595824726} a^{3} - \frac{14411682416492}{194297912363} a^{2} + \frac{6275845837401}{194297912363} a - \frac{1433630625901}{194297912363} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33768.3641595 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1920 |
| The 18 conjugacy class representatives for t20n226 |
| Character table for t20n226 |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.3.31684.1, 10.0.64248054784.1, 10.6.256992219136.1, 10.0.256992219136.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.12.18.61 | $x^{12} - 6 x^{10} + 2 x^{8} - 4 x^{7} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 8$ | $4$ | $3$ | $18$ | $C_2^2 \times A_4$ | $[2, 2, 2]^{6}$ | |
| $89$ | 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.6.4.1 | $x^{6} + 1513 x^{3} + 1710936$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 89.6.4.1 | $x^{6} + 1513 x^{3} + 1710936$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |