Normalized defining polynomial
\( x^{20} - 2 x^{19} + 11 x^{18} - 70 x^{17} + 30 x^{16} - 528 x^{15} + 1188 x^{14} + 1652 x^{13} + 14759 x^{12} + 19694 x^{11} + 19883 x^{10} - 51952 x^{9} - 88708 x^{8} + 149956 x^{7} + 781396 x^{6} + 1102378 x^{5} + 1079534 x^{4} + 825312 x^{3} + 570906 x^{2} + 316440 x + 426546 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(419314835571431481344000000000000000=2^{28}\cdot 5^{15}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{17} - \frac{1}{9} a^{16} - \frac{1}{9} a^{15} - \frac{4}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{4}{9} a^{8} - \frac{1}{9} a^{7} - \frac{4}{9} a^{6} - \frac{2}{9} a^{5} + \frac{1}{9} a^{4} - \frac{2}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{5577392767139525175369045068629705783020206030292490119341883} a^{19} + \frac{89751054727077820060771788204120106158511061094813831923698}{5577392767139525175369045068629705783020206030292490119341883} a^{18} - \frac{32217998171972017099490285240939207589370506905112022630678}{796770395305646453624149295518529397574315147184641445620269} a^{17} + \frac{23417997198502152996087928792451751658068336889358364925223}{796770395305646453624149295518529397574315147184641445620269} a^{16} + \frac{221131095171248253718574295356619113765214974297852918546650}{1859130922379841725123015022876568594340068676764163373113961} a^{15} - \frac{54998277421990602431951304832857693451093242142942364504177}{1859130922379841725123015022876568594340068676764163373113961} a^{14} + \frac{77917974168880007512608720703758135961206818484649776758042}{619710307459947241707671674292189531446689558921387791037987} a^{13} - \frac{1665773782809041574834150703661177871730047609519328837810846}{5577392767139525175369045068629705783020206030292490119341883} a^{12} - \frac{469261255693373272774849063632244075878154717078483550927857}{5577392767139525175369045068629705783020206030292490119341883} a^{11} - \frac{1046927022945673630210547109585551559376944841745756161019404}{5577392767139525175369045068629705783020206030292490119341883} a^{10} - \frac{2735821374935857660634418007610521880825440177304240296613017}{5577392767139525175369045068629705783020206030292490119341883} a^{9} - \frac{812558222942954515620584611705790062915195082755484169327223}{5577392767139525175369045068629705783020206030292490119341883} a^{8} + \frac{191551184060774094392572768006875289096248201696316872753245}{796770395305646453624149295518529397574315147184641445620269} a^{7} - \frac{1370521943710212068515254078764723181796143415336597013313968}{5577392767139525175369045068629705783020206030292490119341883} a^{6} + \frac{1475731237578980144073663317523721396056567357668351957221441}{5577392767139525175369045068629705783020206030292490119341883} a^{5} + \frac{399165406134131828653135304289697327632831544206465560592094}{5577392767139525175369045068629705783020206030292490119341883} a^{4} - \frac{1641287055285566460625746146526834318526266446959891262723011}{5577392767139525175369045068629705783020206030292490119341883} a^{3} - \frac{559085020006374806920458762576929216718581755174227581278595}{1859130922379841725123015022876568594340068676764163373113961} a^{2} + \frac{33854922842066794304821141508436626612161759924327594000118}{206570102486649080569223891430729843815563186307129263679329} a - \frac{89817610290822740174150715416106210043898192138854914714622}{206570102486649080569223891430729843815563186307129263679329}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 679419183.0669895 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{65}) \), 4.0.4394000.2, 5.1.338000.1, 10.2.7425860000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ |
| 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||