Normalized defining polynomial
\( x^{20} + 13 x^{18} + 286 x^{16} + 1014 x^{14} + 17069 x^{12} + 2197 x^{10} + 114244 x^{8} + 456976 x^{6} + 2170636 x^{4} + 14851720 x^{2} + 7425860 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(419314835571431481344000000000000000=2^{28}\cdot 5^{15}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{13} a^{4}$, $\frac{1}{13} a^{5}$, $\frac{1}{13} a^{6}$, $\frac{1}{13} a^{7}$, $\frac{1}{338} a^{8} - \frac{1}{26} a^{7} - \frac{1}{26} a^{6} - \frac{1}{26} a^{5}$, $\frac{1}{338} a^{9} - \frac{1}{26} a^{5}$, $\frac{1}{338} a^{10} - \frac{1}{26} a^{6}$, $\frac{1}{338} a^{11} - \frac{1}{26} a^{7}$, $\frac{1}{4394} a^{12} - \frac{1}{26} a^{7} - \frac{1}{26} a^{6} - \frac{1}{26} a^{5}$, $\frac{1}{8788} a^{13} - \frac{1}{8788} a^{12} - \frac{1}{676} a^{9} - \frac{1}{676} a^{8} - \frac{1}{26} a^{6} - \frac{1}{26} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{26364} a^{14} + \frac{1}{26364} a^{12} + \frac{1}{2028} a^{10} + \frac{1}{2028} a^{8} - \frac{1}{26} a^{7} - \frac{1}{26} a^{6} + \frac{1}{78} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{26364} a^{15} + \frac{1}{26364} a^{13} + \frac{1}{2028} a^{11} + \frac{1}{2028} a^{9} - \frac{1}{26} a^{6} - \frac{1}{39} a^{5} - \frac{1}{26} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{1028196} a^{16} - \frac{1}{13182} a^{12} - \frac{1}{1014} a^{10} + \frac{5}{6084} a^{8} - \frac{4}{117} a^{6} - \frac{1}{26} a^{5} - \frac{1}{78} a^{4} - \frac{1}{2} a^{3} - \frac{4}{9} a^{2} - \frac{4}{9}$, $\frac{1}{1028196} a^{17} + \frac{1}{26364} a^{13} - \frac{1}{8788} a^{12} - \frac{1}{1014} a^{11} - \frac{1}{1521} a^{9} - \frac{1}{676} a^{8} - \frac{4}{117} a^{7} + \frac{1}{39} a^{5} - \frac{1}{26} a^{4} + \frac{1}{18} a^{3} - \frac{4}{9} a$, $\frac{1}{4525022223022392} a^{18} - \frac{883332245}{2262511111511196} a^{16} + \frac{617593331}{58013105423364} a^{14} - \frac{397693271}{9668850903894} a^{12} + \frac{1891271021}{2059636878936} a^{10} + \frac{5795582473}{4462546571028} a^{8} - \frac{1}{26} a^{7} + \frac{409569341}{257454609867} a^{6} + \frac{1857864659}{73558459962} a^{4} - \frac{1}{2} a^{3} - \frac{2159352065}{13202800506} a^{2} - \frac{560221409}{39608401518}$, $\frac{1}{4525022223022392} a^{19} - \frac{883332245}{2262511111511196} a^{17} + \frac{617593331}{58013105423364} a^{15} - \frac{397693271}{9668850903894} a^{13} + \frac{1891271021}{2059636878936} a^{11} + \frac{5795582473}{4462546571028} a^{9} - \frac{18985062077}{514909219734} a^{7} - \frac{1}{26} a^{6} - \frac{485653439}{36779229981} a^{5} - \frac{1}{26} a^{4} - \frac{2159352065}{13202800506} a^{3} - \frac{560221409}{39608401518} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 679419183.0669895 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{65}) \), 4.0.4394000.1, 5.1.338000.1, 10.2.7425860000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.14.5 | $x^{10} - 2 x^{5} - 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ |
| 2.10.14.5 | $x^{10} - 2 x^{5} - 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||