Normalized defining polynomial
\( x^{20} - 3 x^{19} - 8 x^{18} + 34 x^{17} + 49 x^{16} - 314 x^{15} + 48 x^{14} + 1601 x^{13} - 1773 x^{12} - 5186 x^{11} + 12679 x^{10} + 1389 x^{9} - 32322 x^{8} + 25656 x^{7} + 54462 x^{6} - 161941 x^{5} + 210758 x^{4} - 170279 x^{3} + 92765 x^{2} - 31618 x + 6295 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4147457342145361888254380002693=61^{4}\cdot 397^{7}\cdot 439^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 397, 439$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{85} a^{17} - \frac{4}{85} a^{16} - \frac{41}{85} a^{15} + \frac{6}{17} a^{14} + \frac{13}{85} a^{13} + \frac{16}{85} a^{12} - \frac{2}{5} a^{11} - \frac{21}{85} a^{10} - \frac{12}{85} a^{9} + \frac{8}{17} a^{8} - \frac{2}{5} a^{7} - \frac{36}{85} a^{6} + \frac{12}{85} a^{5} - \frac{37}{85} a^{4} - \frac{27}{85} a^{3} - \frac{1}{85} a^{2} + \frac{24}{85} a + \frac{3}{17}$, $\frac{1}{425} a^{18} - \frac{2}{425} a^{17} + \frac{121}{425} a^{16} + \frac{118}{425} a^{15} - \frac{182}{425} a^{14} + \frac{212}{425} a^{13} + \frac{168}{425} a^{12} + \frac{166}{425} a^{11} + \frac{201}{425} a^{10} + \frac{186}{425} a^{9} + \frac{46}{425} a^{8} + \frac{151}{425} a^{7} - \frac{29}{85} a^{6} - \frac{183}{425} a^{5} - \frac{16}{425} a^{4} - \frac{11}{85} a^{3} + \frac{107}{425} a^{2} + \frac{148}{425} a + \frac{6}{85}$, $\frac{1}{7040060621579143190561931081759602375} a^{19} - \frac{679238068095138226083179248070433}{1408012124315828638112386216351920475} a^{18} + \frac{661188479871188783889520620124097}{7040060621579143190561931081759602375} a^{17} - \frac{667748173506428729080453443520153936}{1408012124315828638112386216351920475} a^{16} - \frac{68135887341025713258508719249091291}{7040060621579143190561931081759602375} a^{15} + \frac{1349287829623140524159091559915311203}{7040060621579143190561931081759602375} a^{14} - \frac{3187327690544039290595208224817726088}{7040060621579143190561931081759602375} a^{13} - \frac{1248563111059372837243443640461519893}{7040060621579143190561931081759602375} a^{12} + \frac{1343664283719108987634147337374082643}{7040060621579143190561931081759602375} a^{11} + \frac{177348892117645315613845876771196773}{7040060621579143190561931081759602375} a^{10} + \frac{2200407634908561944200451137941079703}{7040060621579143190561931081759602375} a^{9} + \frac{823390024452896262773296982946765128}{7040060621579143190561931081759602375} a^{8} + \frac{1953065908508505448162800644947954817}{7040060621579143190561931081759602375} a^{7} + \frac{13045566192300053984962870826229356}{414121213034067246503643004809388375} a^{6} - \frac{3357888198551090201359980705393783712}{7040060621579143190561931081759602375} a^{5} - \frac{221905082803571605674170549577184847}{7040060621579143190561931081759602375} a^{4} - \frac{142709237322141706042657988738898759}{414121213034067246503643004809388375} a^{3} + \frac{40243549376991321218590056020885596}{414121213034067246503643004809388375} a^{2} - \frac{1148362447909116853163748112687618994}{7040060621579143190561931081759602375} a - \frac{530958354138082771456537353748006293}{1408012124315828638112386216351920475}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14582834.4872 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 245760 |
| The 201 conjugacy class representatives for t20n886 are not computed |
| Character table for t20n886 is not computed |
Intermediate fields
| 5.5.24217.1, 10.0.257457296071.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||
| 439 | Data not computed | ||||||