Normalized defining polynomial
\( x^{20} - x^{19} - x^{18} - 34 x^{17} + 29 x^{16} + 25 x^{15} + 371 x^{14} - 237 x^{13} - 232 x^{12} - 1510 x^{11} + 811 x^{10} + 1383 x^{9} + 1792 x^{8} - 1064 x^{7} - 2903 x^{6} + 1617 x^{5} + 2774 x^{4} - 960 x^{3} - 1175 x^{2} - 500 x + 625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(41278417207323610480699463560809=3^{10}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(93=3\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{93}(64,·)$, $\chi_{93}(1,·)$, $\chi_{93}(2,·)$, $\chi_{93}(4,·)$, $\chi_{93}(70,·)$, $\chi_{93}(8,·)$, $\chi_{93}(77,·)$, $\chi_{93}(16,·)$, $\chi_{93}(85,·)$, $\chi_{93}(23,·)$, $\chi_{93}(89,·)$, $\chi_{93}(91,·)$, $\chi_{93}(92,·)$, $\chi_{93}(29,·)$, $\chi_{93}(32,·)$, $\chi_{93}(35,·)$, $\chi_{93}(46,·)$, $\chi_{93}(47,·)$, $\chi_{93}(58,·)$, $\chi_{93}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{5} + \frac{1}{5} a$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{8} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} - \frac{1}{5} a$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{16} - \frac{2}{25} a^{15} - \frac{2}{25} a^{13} + \frac{1}{25} a^{12} + \frac{1}{25} a^{11} - \frac{1}{25} a^{10} - \frac{2}{25} a^{9} - \frac{9}{25} a^{8} - \frac{9}{25} a^{7} + \frac{9}{25} a^{6} - \frac{7}{25} a^{5} + \frac{2}{5} a^{4} - \frac{2}{25} a^{3} - \frac{6}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{8375} a^{17} - \frac{162}{8375} a^{16} + \frac{2}{335} a^{15} - \frac{52}{8375} a^{14} + \frac{681}{8375} a^{13} + \frac{321}{8375} a^{12} + \frac{284}{8375} a^{11} - \frac{327}{8375} a^{10} + \frac{496}{8375} a^{9} - \frac{3989}{8375} a^{8} + \frac{3319}{8375} a^{7} - \frac{1957}{8375} a^{6} - \frac{597}{1675} a^{5} + \frac{903}{8375} a^{4} + \frac{104}{8375} a^{3} - \frac{789}{1675} a^{2} + \frac{83}{335} a - \frac{20}{67}$, $\frac{1}{8375} a^{18} - \frac{64}{8375} a^{16} - \frac{662}{8375} a^{15} + \frac{632}{8375} a^{14} - \frac{242}{8375} a^{13} - \frac{309}{8375} a^{12} - \frac{214}{8375} a^{11} + \frac{117}{8375} a^{10} + \frac{653}{8375} a^{9} - \frac{2044}{8375} a^{8} + \frac{2401}{8375} a^{7} + \frac{2251}{8375} a^{6} - \frac{2277}{8375} a^{5} + \frac{468}{1675} a^{4} - \frac{4182}{8375} a^{3} - \frac{639}{1675} a^{2} - \frac{121}{335} a - \frac{24}{67}$, $\frac{1}{450872285142953784125} a^{19} + \frac{21316674166433217}{450872285142953784125} a^{18} - \frac{15559605381363268}{450872285142953784125} a^{17} + \frac{3661215870828319733}{450872285142953784125} a^{16} - \frac{43818508113605840717}{450872285142953784125} a^{15} - \frac{955713489929103203}{90174457028590756825} a^{14} + \frac{14296840225499395608}{450872285142953784125} a^{13} + \frac{8577626063612272309}{450872285142953784125} a^{12} - \frac{25323145523362733672}{450872285142953784125} a^{11} + \frac{7106829809602101798}{90174457028590756825} a^{10} + \frac{12630661596350868553}{450872285142953784125} a^{9} - \frac{167255408799179721181}{450872285142953784125} a^{8} - \frac{149288604813643294698}{450872285142953784125} a^{7} + \frac{69803485119207526508}{450872285142953784125} a^{6} + \frac{196068500505363272451}{450872285142953784125} a^{5} - \frac{28919464576118445689}{450872285142953784125} a^{4} + \frac{695179008050665052}{3606978281143630273} a^{3} + \frac{36777954990158409806}{90174457028590756825} a^{2} - \frac{7391029930605850978}{18034891405718151365} a + \frac{563033300070886669}{3606978281143630273}$
Class group and class number
$C_{15}$, which has order $15$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{943291821507061566}{450872285142953784125} a^{19} - \frac{103550976585711071}{450872285142953784125} a^{18} - \frac{1361295752455181761}{450872285142953784125} a^{17} - \frac{32976299904816825164}{450872285142953784125} a^{16} - \frac{1697824461414786216}{450872285142953784125} a^{15} + \frac{6610063255029953411}{90174457028590756825} a^{14} + \frac{370773877131182175686}{450872285142953784125} a^{13} + \frac{99640292850664310753}{450872285142953784125} a^{12} - \frac{248347518884265447077}{450872285142953784125} a^{11} - \frac{63219443868674205864}{18034891405718151365} a^{10} - \frac{587509164864807242774}{450872285142953784125} a^{9} + \frac{1261235413371388950473}{450872285142953784125} a^{8} + \frac{2605802275459411045157}{450872285142953784125} a^{7} + \frac{986641841744537147216}{450872285142953784125} a^{6} - \frac{2541858694477372355928}{450872285142953784125} a^{5} - \frac{439942554455999234338}{450872285142953784125} a^{4} + \frac{2902054842772644670349}{450872285142953784125} a^{3} + \frac{315741971728630707274}{90174457028590756825} a^{2} - \frac{27799272823298426647}{18034891405718151365} a - \frac{6248170448456772104}{3606978281143630273} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6483708.43992 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{93}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{-31})\), 5.5.923521.1, 10.0.26439622160671.1, 10.10.6424828185043053.1, 10.0.207252522098163.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $31$ | 31.10.9.8 | $x^{10} + 521017$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 31.10.9.8 | $x^{10} + 521017$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |