Normalized defining polynomial
\( x^{20} - 4 x^{19} + 50 x^{18} - 116 x^{17} + 1199 x^{16} - 1900 x^{15} + 18668 x^{14} - 21488 x^{13} + 215087 x^{12} - 232900 x^{11} + 1626322 x^{10} - 1503972 x^{9} + 9654213 x^{8} - 9065852 x^{7} + 41595536 x^{6} - 46839408 x^{5} + 156661796 x^{4} - 190676344 x^{3} + 317189688 x^{2} - 239357408 x + 177738116 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4111503826253885814528363168920502272=2^{42}\cdot 2657^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2657$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{1}{8} a^{14} + \frac{3}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{14} - \frac{1}{8} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{8} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{917643307179727241729417398654483988874341868759792416337078640006810385805224} a^{19} - \frac{32450335951912534420003575494226348098654610674597949572293005127687763708035}{917643307179727241729417398654483988874341868759792416337078640006810385805224} a^{18} - \frac{4466135138329519433748073920887989650820777563339837242901634108347121838397}{917643307179727241729417398654483988874341868759792416337078640006810385805224} a^{17} - \frac{78698687903563817871674660622390838510179404845477943313178352528394725870511}{917643307179727241729417398654483988874341868759792416337078640006810385805224} a^{16} - \frac{21469082743733841875513457991987048016056641672642765303558453667828044235011}{458821653589863620864708699327241994437170934379896208168539320003405192902612} a^{15} - \frac{2040384609823668665448712948350495249521757990163486393833344405810836186459}{229410826794931810432354349663620997218585467189948104084269660001702596451306} a^{14} - \frac{25936783829783927951499772330781133286611351292118270286938960533996985353123}{229410826794931810432354349663620997218585467189948104084269660001702596451306} a^{13} - \frac{10285226453447917010575803895752378328979516573859182892887504555916847330787}{458821653589863620864708699327241994437170934379896208168539320003405192902612} a^{12} - \frac{54024790963195148408100790915584616540472437843133813079915223230285338631629}{917643307179727241729417398654483988874341868759792416337078640006810385805224} a^{11} + \frac{35926112577332121400239194984463510978641212120463725208100797895172882659633}{917643307179727241729417398654483988874341868759792416337078640006810385805224} a^{10} - \frac{7874539037767468117302180766765973999944993728839534952740053164909177335597}{917643307179727241729417398654483988874341868759792416337078640006810385805224} a^{9} + \frac{389845560621045306841688368814846060503322282665570524050557862618878787050111}{917643307179727241729417398654483988874341868759792416337078640006810385805224} a^{8} - \frac{215300351361386836012004549408699142911741124758337237723943181168703540748197}{458821653589863620864708699327241994437170934379896208168539320003405192902612} a^{7} - \frac{110425319489841458210350976105944453852035370469103732412264500175050846857541}{458821653589863620864708699327241994437170934379896208168539320003405192902612} a^{6} - \frac{96816180308935541454126200362399650744535406302147125832710420616055414128373}{458821653589863620864708699327241994437170934379896208168539320003405192902612} a^{5} + \frac{2354571071106011333669640163148421264815389153811684526129047420925738460491}{458821653589863620864708699327241994437170934379896208168539320003405192902612} a^{4} + \frac{65530727683809668988517702175088416627556918748246821016005059896747726126979}{229410826794931810432354349663620997218585467189948104084269660001702596451306} a^{3} - \frac{38709012505534012229404089333858333553942038465651057492900486926255787038549}{229410826794931810432354349663620997218585467189948104084269660001702596451306} a^{2} + \frac{3699813428790511376501300742267592902089541249477500448155054429716504812885}{114705413397465905216177174831810498609292733594974052042134830000851298225653} a - \frac{8601812242397225005366460017330142349556066978944690121310665534616581287383}{114705413397465905216177174831810498609292733594974052042134830000851298225653}$
Class group and class number
$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 955634612.02 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 28800 |
| The 41 conjugacy class representatives for t20n547 |
| Character table for t20n547 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.680192.2, 10.6.925322313728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.12.26.64 | $x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{6} - 2 x^{4} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | $S_3 \times C_2^2$ | $[2, 3]_{3}^{2}$ | |
| 2657 | Data not computed | ||||||