Normalized defining polynomial
\( x^{20} - 8 x^{19} + 92 x^{18} - 508 x^{17} + 3536 x^{16} - 15820 x^{15} + 80556 x^{14} - 301748 x^{13} + 1180861 x^{12} - 3705440 x^{11} + 11379146 x^{10} - 29303884 x^{9} + 69078496 x^{8} - 138934976 x^{7} + 247514958 x^{6} - 378201868 x^{5} + 495962812 x^{4} - 543999108 x^{3} + 473508600 x^{2} - 276218960 x + 90850706 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4111503826253885814528363168920502272=2^{42}\cdot 2657^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2657$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{34} a^{16} + \frac{6}{17} a^{15} + \frac{6}{17} a^{13} - \frac{5}{34} a^{12} + \frac{6}{17} a^{11} - \frac{3}{17} a^{10} - \frac{4}{17} a^{9} - \frac{8}{17} a^{7} - \frac{5}{17} a^{6} + \frac{4}{17} a^{5} + \frac{5}{17} a^{4} - \frac{2}{17} a^{3} - \frac{7}{17} a - \frac{2}{17}$, $\frac{1}{34} a^{17} - \frac{4}{17} a^{15} + \frac{6}{17} a^{14} - \frac{13}{34} a^{13} + \frac{2}{17} a^{12} - \frac{7}{17} a^{11} - \frac{2}{17} a^{10} - \frac{3}{17} a^{9} - \frac{8}{17} a^{8} + \frac{6}{17} a^{7} - \frac{4}{17} a^{6} + \frac{8}{17} a^{5} + \frac{6}{17} a^{4} + \frac{7}{17} a^{3} - \frac{7}{17} a^{2} - \frac{3}{17} a + \frac{7}{17}$, $\frac{1}{34} a^{18} + \frac{3}{17} a^{15} - \frac{13}{34} a^{14} - \frac{1}{17} a^{13} + \frac{7}{17} a^{12} - \frac{5}{17} a^{11} + \frac{7}{17} a^{10} - \frac{6}{17} a^{9} + \frac{6}{17} a^{8} + \frac{2}{17} a^{6} + \frac{4}{17} a^{5} - \frac{4}{17} a^{4} - \frac{6}{17} a^{3} - \frac{3}{17} a^{2} + \frac{2}{17} a + \frac{1}{17}$, $\frac{1}{34172011567813186842736292618577184999499528547790890462447100906633021146926} a^{19} - \frac{340561755267773164254152884843759672303296605578987310251830811607098025665}{34172011567813186842736292618577184999499528547790890462447100906633021146926} a^{18} - \frac{234734820522029153523718995729447025931293374081978074955923888928706669553}{17086005783906593421368146309288592499749764273895445231223550453316510573463} a^{17} - \frac{2085046147585103716139637617053502469748646323818745735445854230911856397}{2010118327518422755455076036386893235264678149870052380143947112154883596878} a^{16} - \frac{596010790504474777078673299328912860190432771975918008242846108631701771249}{2010118327518422755455076036386893235264678149870052380143947112154883596878} a^{15} + \frac{14856154775342118554037609052150171287582709497211067393097017481598992816491}{34172011567813186842736292618577184999499528547790890462447100906633021146926} a^{14} + \frac{1591438799371315498854869750432106593271158580793254112848232046804268325464}{17086005783906593421368146309288592499749764273895445231223550453316510573463} a^{13} - \frac{2304457111618042016966170195781979643240012420443402671296579210579735129661}{34172011567813186842736292618577184999499528547790890462447100906633021146926} a^{12} - \frac{6259851226323058066513843520972502207279866637459431843007812737126860331396}{17086005783906593421368146309288592499749764273895445231223550453316510573463} a^{11} - \frac{3686620079693729934655423394613913251928031796749403988303249620858120898044}{17086005783906593421368146309288592499749764273895445231223550453316510573463} a^{10} - \frac{1095184287712475276179956033952606305958182599312473915880043201293395330831}{17086005783906593421368146309288592499749764273895445231223550453316510573463} a^{9} + \frac{490566992730614660936603868948239309292358900029494113247904037269316390660}{1005059163759211377727538018193446617632339074935026190071973556077441798439} a^{8} + \frac{6064281412786951843679761835718174338071223785125228036236434106804647739817}{17086005783906593421368146309288592499749764273895445231223550453316510573463} a^{7} + \frac{87133294381515312037272608174483767075209195299473721954959586233514552508}{899263462310873337966744542594136447355250751257655012169660550174553188077} a^{6} - \frac{4058305175804633940956398696448745042833992942479195384872812749857142163760}{17086005783906593421368146309288592499749764273895445231223550453316510573463} a^{5} + \frac{3831484056143262353857089845501469498330405648963006927305905969655568527645}{17086005783906593421368146309288592499749764273895445231223550453316510573463} a^{4} - \frac{3037545733257615831342150899975848278039815550585739057433490411534997377886}{17086005783906593421368146309288592499749764273895445231223550453316510573463} a^{3} + \frac{7231430949815640042906531227583255531210596342532928228664561161888040771216}{17086005783906593421368146309288592499749764273895445231223550453316510573463} a^{2} - \frac{120487784877594432256345214623700470469883302434540219418079886397130870732}{1005059163759211377727538018193446617632339074935026190071973556077441798439} a - \frac{8087065301718519483420230935302353190769014396748118037885153949935534849424}{17086005783906593421368146309288592499749764273895445231223550453316510573463}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1374798594.16 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 28800 |
| The 41 conjugacy class representatives for t20n547 |
| Character table for t20n547 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.680192.2, 10.6.925322313728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.12.26.64 | $x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{6} - 2 x^{4} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | $S_3 \times C_2^2$ | $[2, 3]_{3}^{2}$ | |
| 2657 | Data not computed | ||||||