Normalized defining polynomial
\( x^{20} + 45 x^{18} + 1325 x^{16} + 22970 x^{14} + 290350 x^{12} + 2291230 x^{10} + 12738625 x^{8} + 31575125 x^{6} + 55495925 x^{4} + 7570500 x^{2} + 960400 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4043110607138384185566008090972900390625=3^{10}\cdot 5^{26}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{3}$, $\frac{1}{40} a^{10} - \frac{1}{8} a^{4} - \frac{1}{2} a$, $\frac{1}{40} a^{11} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{240} a^{12} + \frac{1}{120} a^{10} - \frac{1}{16} a^{9} + \frac{11}{48} a^{6} + \frac{1}{8} a^{4} + \frac{1}{16} a^{3} + \frac{1}{3} a^{2} + \frac{1}{6}$, $\frac{1}{1680} a^{13} + \frac{1}{840} a^{11} - \frac{1}{80} a^{10} + \frac{3}{56} a^{9} + \frac{83}{336} a^{7} + \frac{5}{56} a^{5} - \frac{3}{16} a^{4} + \frac{23}{168} a^{3} - \frac{1}{2} a^{2} - \frac{4}{21} a$, $\frac{1}{5040} a^{14} + \frac{1}{560} a^{12} - \frac{1}{80} a^{11} + \frac{31}{2520} a^{10} - \frac{1}{16} a^{9} + \frac{41}{1008} a^{8} - \frac{1}{4} a^{7} + \frac{107}{1008} a^{6} - \frac{3}{16} a^{5} + \frac{65}{504} a^{4} + \frac{1}{16} a^{3} - \frac{41}{168} a^{2} - \frac{1}{4} a - \frac{1}{9}$, $\frac{1}{5040} a^{15} + \frac{11}{1260} a^{11} - \frac{29}{504} a^{9} - \frac{17}{126} a^{7} - \frac{5}{36} a^{5} - \frac{73}{336} a^{3} - \frac{5}{126} a - \frac{1}{2}$, $\frac{1}{96647040} a^{16} - \frac{1193}{24161760} a^{14} + \frac{2371}{3020220} a^{12} - \frac{1}{80} a^{11} - \frac{82931}{16107840} a^{10} - \frac{1}{16} a^{9} - \frac{56069}{1208088} a^{8} + \frac{80839}{402696} a^{6} - \frac{3}{16} a^{5} - \frac{1324163}{19329408} a^{4} - \frac{7}{16} a^{3} + \frac{229919}{690336} a^{2} - \frac{1}{2} a - \frac{30601}{172584}$, $\frac{1}{96647040} a^{17} - \frac{1193}{24161760} a^{15} + \frac{2293}{12080880} a^{13} - \frac{102107}{16107840} a^{11} - \frac{90565}{2416176} a^{9} - \frac{37273}{805392} a^{7} - \frac{3050003}{19329408} a^{5} - \frac{1770337}{4832352} a^{3} - \frac{588139}{1208088} a - \frac{1}{2}$, $\frac{1}{163502697121972911360} a^{18} - \frac{1}{193294080} a^{17} + \frac{459223420883}{163502697121972911360} a^{16} - \frac{3601}{48323520} a^{15} + \frac{16922137136369}{267161269807145280} a^{14} - \frac{2293}{24161760} a^{13} + \frac{7055542792327637}{3554406459173324160} a^{12} + \frac{121393}{10738560} a^{11} + \frac{359102847075249853}{81751348560986455680} a^{10} + \frac{229591}{4832352} a^{9} - \frac{48488543349228091}{1021891857012330696} a^{8} + \frac{145937}{1610784} a^{7} - \frac{227743933455498715}{1923561142611446016} a^{6} - \frac{6346237}{38658816} a^{5} - \frac{1211629410179067683}{10900179808131527424} a^{4} + \frac{402889}{1380672} a^{3} - \frac{3338599163802616205}{8175134856098645568} a^{2} + \frac{636079}{2416176} a - \frac{10995177937747117}{41709871714789008}$, $\frac{1}{1144518879853810379520} a^{19} + \frac{43503292285}{38150629328460345984} a^{17} - \frac{1}{193294080} a^{16} - \frac{2646355389512267}{71532429990863148720} a^{15} - \frac{3601}{48323520} a^{14} - \frac{62941726572919}{1463579130247839360} a^{13} - \frac{31057}{24161760} a^{12} + \frac{852911762860961777}{286129719963452594880} a^{11} + \frac{19165}{2147712} a^{10} + \frac{739165603503809683}{28612971996345259488} a^{9} - \frac{288161}{4832352} a^{8} - \frac{30321607329059717267}{228903775970762075904} a^{7} - \frac{247171}{1610784} a^{6} + \frac{3656545573807819439}{114451887985381037952} a^{5} + \frac{6079811}{38658816} a^{4} - \frac{256544302062598135}{9537657332115086496} a^{3} - \frac{4658417}{9664704} a^{2} - \frac{45580540291760473}{145984551001761528} a + \frac{136069}{345168}$
Class group and class number
$C_{2}\times C_{2}\times C_{82}\times C_{410}$, which has order $134480$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{13088843577}{89053756602381760} a^{18} - \frac{351862678127}{53432253961429056} a^{16} - \frac{2584981588705}{13358063490357264} a^{14} - \frac{3880398475531}{1161570738291936} a^{12} - \frac{5622618918697657}{133580634903572640} a^{10} - \frac{91743977896603}{278292989382443} a^{8} - \frac{97346641348624295}{53432253961429056} a^{6} - \frac{234272859580158983}{53432253961429056} a^{4} - \frac{105522713889382655}{13358063490357264} a^{2} - \frac{5288690925091}{68153385154884} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 143712739.876 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 5.5.228765625.1 x5, 10.10.261668555908203125.1, 10.0.63585459085693359375.3 x5, 10.0.12717091817138671875.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{10}$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.10.8.1 | $x^{10} + 220 x^{5} + 41503$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.1 | $x^{10} + 220 x^{5} + 41503$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |