Normalized defining polynomial
\( x^{20} - 4 x^{19} + 2 x^{18} - 48 x^{17} + 946 x^{16} - 1220 x^{15} + 20818 x^{14} - 33104 x^{13} + 572590 x^{12} - 288780 x^{11} + 11227130 x^{10} - 557284 x^{9} + 161496439 x^{8} + 43372644 x^{7} + 1855179564 x^{6} + 1132575984 x^{5} + 15346327698 x^{4} + 10059206184 x^{3} + 78239489544 x^{2} + 29389823568 x + 177674855049 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(40425381270649334011516273744683372380160000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 41^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $302.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4920=2^{3}\cdot 3\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4920}(1,·)$, $\chi_{4920}(2051,·)$, $\chi_{4920}(1349,·)$, $\chi_{4920}(961,·)$, $\chi_{4920}(2189,·)$, $\chi_{4920}(4561,·)$, $\chi_{4920}(3011,·)$, $\chi_{4920}(2839,·)$, $\chi_{4920}(3481,·)$, $\chi_{4920}(1691,·)$, $\chi_{4920}(1759,·)$, $\chi_{4920}(3749,·)$, $\chi_{4920}(4321,·)$, $\chi_{4920}(611,·)$, $\chi_{4920}(2789,·)$, $\chi_{4920}(2599,·)$, $\chi_{4920}(1451,·)$, $\chi_{4920}(4159,·)$, $\chi_{4920}(2429,·)$, $\chi_{4920}(3199,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{4}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{4}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{5}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{6}$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{12} - \frac{1}{27} a^{11} + \frac{1}{27} a^{10} + \frac{1}{9} a^{8} - \frac{1}{27} a^{7} + \frac{1}{27} a^{6} + \frac{10}{27} a^{5} - \frac{10}{27} a^{4} - \frac{1}{3} a^{3} + \frac{2}{9} a^{2}$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{12} + \frac{1}{27} a^{10} + \frac{2}{27} a^{8} - \frac{1}{27} a^{6} + \frac{1}{3} a^{5} - \frac{1}{27} a^{4} + \frac{1}{3} a^{3} - \frac{1}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{15} + \frac{1}{81} a^{14} - \frac{4}{81} a^{12} + \frac{2}{81} a^{11} + \frac{1}{27} a^{10} - \frac{4}{81} a^{9} - \frac{10}{81} a^{8} - \frac{1}{9} a^{7} + \frac{4}{81} a^{6} + \frac{7}{81} a^{5} - \frac{7}{27} a^{4} - \frac{8}{27} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{81} a^{16} - \frac{1}{81} a^{14} - \frac{1}{81} a^{13} + \frac{1}{27} a^{12} - \frac{2}{81} a^{11} - \frac{4}{81} a^{10} + \frac{1}{27} a^{9} + \frac{10}{81} a^{8} + \frac{10}{81} a^{7} + \frac{2}{27} a^{6} - \frac{25}{81} a^{5} - \frac{11}{27} a^{4} + \frac{5}{27} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{243} a^{17} - \frac{1}{243} a^{15} + \frac{2}{243} a^{14} + \frac{1}{81} a^{13} + \frac{1}{243} a^{12} + \frac{5}{243} a^{11} - \frac{1}{81} a^{10} + \frac{1}{243} a^{9} + \frac{16}{243} a^{8} - \frac{7}{81} a^{7} - \frac{1}{243} a^{6} - \frac{32}{81} a^{5} - \frac{11}{81} a^{4} - \frac{1}{3} a^{3} - \frac{10}{27} a^{2} - \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{912086487483410936657511} a^{18} - \frac{1234088181987709418507}{912086487483410936657511} a^{17} - \frac{4134608205312420487180}{912086487483410936657511} a^{16} - \frac{24861834290975614751}{12494335444978232009007} a^{15} - \frac{11061408586440150007594}{912086487483410936657511} a^{14} - \frac{16195614033799502348882}{912086487483410936657511} a^{13} - \frac{4290958538385393450127}{101342943053712326295279} a^{12} - \frac{43836556820050356503776}{912086487483410936657511} a^{11} + \frac{16805635219165770279628}{912086487483410936657511} a^{10} - \frac{42483126029750430233587}{912086487483410936657511} a^{9} - \frac{23393783357219585208926}{912086487483410936657511} a^{8} - \frac{124860429727531087684126}{912086487483410936657511} a^{7} - \frac{129186933376209856515118}{912086487483410936657511} a^{6} + \frac{5239215723514352943668}{11260327005968036255031} a^{5} - \frac{103079974486709833770983}{304028829161136978885837} a^{4} + \frac{15026380828862001051217}{33780981017904108765093} a^{3} + \frac{37829691526417824246176}{101342943053712326295279} a^{2} + \frac{998186761119700877807}{33780981017904108765093} a - \frac{1472281836341168851873}{11260327005968036255031}$, $\frac{1}{12469701946482477980826830883347643672496783357610835693} a^{19} - \frac{511819983104902091770602497482}{12469701946482477980826830883347643672496783357610835693} a^{18} + \frac{9958213795844903217746241082698739146161686348117907}{12469701946482477980826830883347643672496783357610835693} a^{17} + \frac{19686537827204295116542298119686010784079677286353515}{4156567315494159326942276961115881224165594452536945231} a^{16} - \frac{53760338357174107706617849254855744458252441742107816}{12469701946482477980826830883347643672496783357610835693} a^{15} + \frac{113603588401089418805236280781691104326940575904072595}{12469701946482477980826830883347643672496783357610835693} a^{14} + \frac{161098502492854405865895267648098006620259003737266613}{12469701946482477980826830883347643672496783357610835693} a^{13} - \frac{242387123003626563097135761769269262135334889895827701}{12469701946482477980826830883347643672496783357610835693} a^{12} + \frac{336449742891422828744692127779671762524768207808791524}{12469701946482477980826830883347643672496783357610835693} a^{11} + \frac{28686425223322520412598139178919603665869101827412592}{4156567315494159326942276961115881224165594452536945231} a^{10} - \frac{415793472516063301154735463641402651291798388673435279}{12469701946482477980826830883347643672496783357610835693} a^{9} - \frac{1840283643008668647385453763532665132725596645203880541}{12469701946482477980826830883347643672496783357610835693} a^{8} - \frac{966069559357513220876361355526181718091650728575271080}{12469701946482477980826830883347643672496783357610835693} a^{7} - \frac{156331295735594535370930276106076352528942869737398052}{1385522438498053108980758987038627074721864817512315077} a^{6} + \frac{1189321384494196544715866133434243242152541284665335985}{4156567315494159326942276961115881224165594452536945231} a^{5} - \frac{241678797407430267307332788582101847139320889518202362}{1385522438498053108980758987038627074721864817512315077} a^{4} + \frac{64159967254136101606607181890392214353709493492694672}{1385522438498053108980758987038627074721864817512315077} a^{3} - \frac{12896092089457292277958730106799045473366503969448469}{51315645870298263295583666186615817582291289537493151} a^{2} + \frac{4681866862823674069768411662348618416433014897119882}{51315645870298263295583666186615817582291289537493151} a + \frac{14557548627790962217654617282936118892027154439982801}{51315645870298263295583666186615817582291289537493151}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{3432110}$, which has order $109827520$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9452086796.91891 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-5}, \sqrt{6})\), 5.5.2825761.1, 10.0.25551760733187200000.2, 10.10.63580957267604373504.1, 10.0.198690491461263667200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $41$ | 41.10.8.1 | $x^{10} - 27101 x^{5} + 418286592$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 41.10.8.1 | $x^{10} - 27101 x^{5} + 418286592$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |