Normalized defining polynomial
\( x^{20} - 5 x^{19} - 3 x^{18} + 51 x^{17} - 36 x^{16} - 221 x^{15} + 399 x^{14} - 153 x^{13} + 262 x^{12} - 677 x^{11} + 169 x^{10} + 203 x^{9} + 236 x^{8} - 335 x^{7} - 335 x^{6} + 325 x^{5} + 990 x^{4} + 1025 x^{3} + 575 x^{2} + 175 x + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4031987800898000000000000000=2^{16}\cdot 5^{15}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{9} + \frac{2}{5} a^{4}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{10} + \frac{2}{5} a^{5}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{11} + \frac{2}{5} a^{6}$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4}$, $\frac{1}{475} a^{18} - \frac{47}{475} a^{17} - \frac{34}{475} a^{16} - \frac{46}{475} a^{15} - \frac{44}{475} a^{14} - \frac{3}{475} a^{13} + \frac{3}{95} a^{12} - \frac{88}{475} a^{11} + \frac{103}{475} a^{10} - \frac{12}{25} a^{9} - \frac{24}{95} a^{8} - \frac{77}{475} a^{7} + \frac{22}{95} a^{6} - \frac{4}{19} a^{5} - \frac{36}{95} a^{4} - \frac{28}{95} a^{3} + \frac{1}{19} a^{2} - \frac{2}{19} a + \frac{2}{19}$, $\frac{1}{114300026230909533025} a^{19} + \frac{7058570822741704}{22860005246181906605} a^{18} - \frac{7993715330559387348}{114300026230909533025} a^{17} + \frac{8654399593093092631}{114300026230909533025} a^{16} + \frac{10865690259891822609}{114300026230909533025} a^{15} + \frac{8304266903010929469}{114300026230909533025} a^{14} + \frac{7278006487408128729}{114300026230909533025} a^{13} + \frac{9218280518322146882}{114300026230909533025} a^{12} + \frac{1975981405474657467}{10390911475537230275} a^{11} - \frac{23052934488878861837}{114300026230909533025} a^{10} + \frac{10133708930698039029}{114300026230909533025} a^{9} - \frac{46110812951327474062}{114300026230909533025} a^{8} + \frac{1963752051356600464}{6015790854258396475} a^{7} - \frac{558020539300844703}{22860005246181906605} a^{6} - \frac{7842812998391431448}{22860005246181906605} a^{5} - \frac{7318206145924743896}{22860005246181906605} a^{4} + \frac{7856617336212350379}{22860005246181906605} a^{3} + \frac{704375244550844807}{4572001049236381321} a^{2} - \frac{677639372599180857}{4572001049236381321} a - \frac{2129276002756734725}{4572001049236381321}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 246762.21333 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.36125.1, 5.1.578000.2 x5, 10.2.1670420000000.2 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.578000.2 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $17$ | 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |