Normalized defining polynomial
\( x^{20} - 3 x^{19} + 22 x^{18} - 84 x^{17} + 429 x^{16} - 729 x^{15} + 2976 x^{14} - 1344 x^{13} + 14160 x^{12} + 14496 x^{11} + 54102 x^{10} + 61092 x^{9} + 114720 x^{8} + 110016 x^{7} + 151776 x^{6} + 91584 x^{5} + 89856 x^{4} + 27648 x^{3} + 28672 x^{2} + 4096 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4019475888928019955600000000000000=2^{16}\cdot 3^{18}\cdot 5^{14}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{3}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{3}{16} a^{9} + \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{13} - \frac{3}{32} a^{10} - \frac{15}{32} a^{9} - \frac{1}{16} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{5}{16} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{14} - \frac{3}{64} a^{11} - \frac{15}{64} a^{10} + \frac{15}{32} a^{9} - \frac{3}{8} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{5}{32} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{128} a^{16} - \frac{1}{128} a^{15} - \frac{3}{128} a^{12} - \frac{15}{128} a^{11} + \frac{15}{64} a^{10} + \frac{5}{16} a^{9} - \frac{5}{16} a^{8} + \frac{1}{4} a^{7} + \frac{27}{64} a^{6} + \frac{1}{8} a^{5} + \frac{1}{16} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{17} - \frac{1}{256} a^{16} - \frac{3}{256} a^{13} - \frac{15}{256} a^{12} + \frac{15}{128} a^{11} + \frac{5}{32} a^{10} + \frac{11}{32} a^{9} + \frac{1}{8} a^{8} - \frac{37}{128} a^{7} - \frac{7}{16} a^{6} - \frac{15}{32} a^{5} + \frac{1}{16} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{534016} a^{18} + \frac{281}{534016} a^{17} - \frac{649}{267008} a^{16} - \frac{101}{33376} a^{15} + \frac{6421}{534016} a^{14} + \frac{15987}{534016} a^{13} + \frac{193}{16688} a^{12} - \frac{13611}{133504} a^{11} + \frac{5}{112} a^{10} - \frac{9683}{33376} a^{9} - \frac{56613}{267008} a^{8} + \frac{31219}{133504} a^{7} - \frac{7781}{66752} a^{6} + \frac{1907}{33376} a^{5} + \frac{177}{1043} a^{4} + \frac{2679}{8344} a^{3} - \frac{1529}{4172} a^{2} + \frac{67}{1043} a - \frac{517}{1043}$, $\frac{1}{202406109381018120348559066901578640384} a^{19} - \frac{21639622708031359545768418951013}{202406109381018120348559066901578640384} a^{18} - \frac{5248162353014240440494162204879529}{3614394810375323577652840480385332864} a^{17} + \frac{11490088825919147003008312372893585}{50601527345254530087139766725394660096} a^{16} - \frac{739412033000452939745910880168454827}{202406109381018120348559066901578640384} a^{15} + \frac{189709588585718976322313703023151357}{202406109381018120348559066901578640384} a^{14} - \frac{297038026666292620485171066012028265}{101203054690509060174279533450789320192} a^{13} - \frac{557752654851081176246930278998983049}{50601527345254530087139766725394660096} a^{12} + \frac{342573230825112239349391406705695091}{25300763672627265043569883362697330048} a^{11} - \frac{3068872609797912998056978631972909145}{12650381836313632521784941681348665024} a^{10} - \frac{9001477165329063778909177769862488613}{101203054690509060174279533450789320192} a^{9} + \frac{998958865820339446613233778005839793}{3614394810375323577652840480385332864} a^{8} - \frac{2447687664399097212288998757117671205}{6325190918156816260892470840674332512} a^{7} + \frac{2333631805816439979220474877838336273}{6325190918156816260892470840674332512} a^{6} + \frac{2329786735432333319081450233885677485}{6325190918156816260892470840674332512} a^{5} + \frac{98107142751761956226514683544212337}{1581297729539204065223117710168583128} a^{4} + \frac{78753443652960876051173163444913663}{1581297729539204065223117710168583128} a^{3} - \frac{45231821422485766610661292219722137}{112949837824228861801651265012041652} a^{2} - \frac{70723670497081715908924279609337449}{197662216192400508152889713771072891} a + \frac{82135357420445737555591225905835024}{197662216192400508152889713771072891}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1172529913.9999409 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-15}, \sqrt{33})\), 5.1.162000.1, 10.0.393660000000.1, 10.0.21133112220000000.1, 10.2.12679867332000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 11 | Data not computed | ||||||