Normalized defining polynomial
\( x^{20} + 60 x^{18} + 1530 x^{16} - 61 x^{15} + 21600 x^{14} - 2745 x^{13} + 184275 x^{12} - 49410 x^{11} + 976936 x^{10} - 452925 x^{9} + 3246330 x^{8} - 2223450 x^{7} + 7022340 x^{6} - 5859721 x^{5} + 10764225 x^{4} - 10075065 x^{3} + 9995400 x^{2} - 13549320 x + 18662101 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(401221017379430122673511505126953125=5^{35}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(325=5^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{325}(1,·)$, $\chi_{325}(66,·)$, $\chi_{325}(131,·)$, $\chi_{325}(196,·)$, $\chi_{325}(261,·)$, $\chi_{325}(12,·)$, $\chi_{325}(77,·)$, $\chi_{325}(14,·)$, $\chi_{325}(79,·)$, $\chi_{325}(144,·)$, $\chi_{325}(209,·)$, $\chi_{325}(274,·)$, $\chi_{325}(142,·)$, $\chi_{325}(207,·)$, $\chi_{325}(272,·)$, $\chi_{325}(38,·)$, $\chi_{325}(103,·)$, $\chi_{325}(168,·)$, $\chi_{325}(233,·)$, $\chi_{325}(298,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} - \frac{8}{19} a^{8} - \frac{8}{19} a^{6} - \frac{2}{19} a^{5} + \frac{1}{19} a^{4} + \frac{8}{19} a^{3} - \frac{8}{19} a^{2} + \frac{5}{19} a - \frac{4}{19}$, $\frac{1}{19} a^{11} - \frac{8}{19} a^{9} - \frac{8}{19} a^{7} - \frac{2}{19} a^{6} + \frac{1}{19} a^{5} + \frac{8}{19} a^{4} - \frac{8}{19} a^{3} + \frac{5}{19} a^{2} - \frac{4}{19} a$, $\frac{1}{19} a^{12} + \frac{4}{19} a^{8} - \frac{2}{19} a^{7} - \frac{6}{19} a^{6} - \frac{8}{19} a^{5} - \frac{7}{19} a^{3} + \frac{8}{19} a^{2} + \frac{2}{19} a + \frac{6}{19}$, $\frac{1}{315732481} a^{13} - \frac{7415831}{315732481} a^{12} + \frac{39}{315732481} a^{11} - \frac{1089932}{315732481} a^{10} + \frac{585}{315732481} a^{9} + \frac{18520916}{315732481} a^{8} - \frac{49848285}{315732481} a^{7} + \frac{91238201}{315732481} a^{6} + \frac{14742}{315732481} a^{5} - \frac{8233950}{315732481} a^{4} + \frac{132962105}{315732481} a^{3} + \frac{17644007}{315732481} a^{2} - \frac{132930515}{315732481} a + \frac{6422776}{16617499}$, $\frac{1}{315732481} a^{14} + \frac{42}{315732481} a^{12} + \frac{5629994}{315732481} a^{11} + \frac{693}{315732481} a^{10} - \frac{13620186}{315732481} a^{9} + \frac{5670}{315732481} a^{8} + \frac{2732758}{315732481} a^{7} - \frac{132916178}{315732481} a^{6} - \frac{126901762}{315732481} a^{5} - \frac{99657366}{315732481} a^{4} - \frac{44035218}{315732481} a^{3} + \frac{16653220}{315732481} a^{2} + \frac{26754866}{315732481} a + \frac{4374}{315732481}$, $\frac{1}{315732481} a^{15} + \frac{1362415}{315732481} a^{12} - \frac{945}{315732481} a^{11} - \frac{1078040}{315732481} a^{10} - \frac{18900}{315732481} a^{9} + \frac{122199232}{315732481} a^{8} + \frac{66316906}{315732481} a^{7} + \frac{95763552}{315732481} a^{6} - \frac{33806534}{315732481} a^{5} - \frac{47176797}{315732481} a^{4} - \frac{150450516}{315732481} a^{3} - \frac{132680963}{315732481} a^{2} + \frac{49458837}{315732481} a + \frac{59284440}{315732481}$, $\frac{1}{315732481} a^{16} - \frac{1080}{315732481} a^{12} - \frac{4359728}{315732481} a^{11} - \frac{23760}{315732481} a^{10} - \frac{126436076}{315732481} a^{9} - \frac{218700}{315732481} a^{8} + \frac{7221232}{315732481} a^{7} - \frac{150537267}{315732481} a^{6} - \frac{91194933}{315732481} a^{5} - \frac{1856642}{16617499} a^{4} + \frac{67171817}{315732481} a^{3} - \frac{101279634}{315732481} a^{2} + \frac{92709206}{315732481} a - \frac{196830}{315732481}$, $\frac{1}{315732481} a^{17} - \frac{3822690}{315732481} a^{12} + \frac{18360}{315732481} a^{11} - \frac{7397714}{315732481} a^{10} + \frac{413100}{315732481} a^{9} + \frac{2341716}{315732481} a^{8} + \frac{86656679}{315732481} a^{7} - \frac{79089424}{315732481} a^{6} - \frac{69207335}{315732481} a^{5} + \frac{48250283}{315732481} a^{4} - \frac{77397594}{315732481} a^{3} - \frac{78209577}{315732481} a^{2} - \frac{139519161}{315732481} a + \frac{68448947}{315732481}$, $\frac{1}{315732481} a^{18} + \frac{22032}{315732481} a^{12} - \frac{7870295}{315732481} a^{11} + \frac{545292}{315732481} a^{10} - \frac{37981997}{315732481} a^{9} + \frac{5353776}{315732481} a^{8} + \frac{152369311}{315732481} a^{7} + \frac{7437199}{16617499} a^{6} + \frac{19172156}{315732481} a^{5} - \frac{96019731}{315732481} a^{4} + \frac{52656972}{315732481} a^{3} - \frac{90779006}{315732481} a^{2} - \frac{112858232}{315732481} a + \frac{5353776}{315732481}$, $\frac{1}{315732481} a^{19} - \frac{5531871}{315732481} a^{12} - \frac{16524}{16617499} a^{11} - \frac{192170}{16617499} a^{10} - \frac{396576}{16617499} a^{9} - \frac{73791543}{315732481} a^{8} - \frac{51196997}{315732481} a^{7} - \frac{54958238}{315732481} a^{6} + \frac{110944493}{315732481} a^{5} - \frac{66515704}{315732481} a^{4} + \frac{86727338}{315732481} a^{3} + \frac{70326140}{315732481} a^{2} + \frac{95671494}{315732481} a + \frac{135774889}{315732481}$
Class group and class number
$C_{15362}$, which has order $15362$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.837641 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.21125.1, 5.5.390625.1, \(\Q(\zeta_{25})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||