Properties

Label 20.0.39983356593...4464.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 3^{10}\cdot 71^{8}$
Root discriminant $19.06$
Ramified primes $2, 3, 71$
Class number $1$
Class group Trivial
Galois group $C_{10}\times D_5$ (as 20T24)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 38, 0, 467, 0, 2260, 0, 5047, 0, 5684, 0, 3467, 0, 1198, 0, 234, 0, 24, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 24*x^18 + 234*x^16 + 1198*x^14 + 3467*x^12 + 5684*x^10 + 5047*x^8 + 2260*x^6 + 467*x^4 + 38*x^2 + 1)
 
gp: K = bnfinit(x^20 + 24*x^18 + 234*x^16 + 1198*x^14 + 3467*x^12 + 5684*x^10 + 5047*x^8 + 2260*x^6 + 467*x^4 + 38*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{20} + 24 x^{18} + 234 x^{16} + 1198 x^{14} + 3467 x^{12} + 5684 x^{10} + 5047 x^{8} + 2260 x^{6} + 467 x^{4} + 38 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(39983356593077948293054464=2^{20}\cdot 3^{10}\cdot 71^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.06$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 71$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{15} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{5356} a^{18} + \frac{285}{5356} a^{16} - \frac{365}{5356} a^{14} - \frac{337}{5356} a^{12} - \frac{133}{5356} a^{10} + \frac{33}{412} a^{8} - \frac{2155}{5356} a^{6} - \frac{1}{2} a^{5} + \frac{423}{2678} a^{4} - \frac{45}{103} a^{2} - \frac{1}{2} a + \frac{1221}{5356}$, $\frac{1}{5356} a^{19} + \frac{285}{5356} a^{17} - \frac{365}{5356} a^{15} - \frac{337}{5356} a^{13} - \frac{133}{5356} a^{11} + \frac{33}{412} a^{9} - \frac{2155}{5356} a^{7} - \frac{1}{2} a^{6} + \frac{423}{2678} a^{5} - \frac{45}{103} a^{3} - \frac{1}{2} a^{2} + \frac{1221}{5356} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{487}{5356} a^{19} - \frac{93}{412} a^{18} - \frac{5795}{2678} a^{17} - \frac{2197}{412} a^{16} - \frac{111469}{5356} a^{15} - \frac{10477}{206} a^{14} - \frac{278801}{2678} a^{13} - \frac{51949}{206} a^{12} - \frac{1547385}{5356} a^{11} - \frac{286125}{412} a^{10} - \frac{44883}{103} a^{9} - \frac{431297}{412} a^{8} - \frac{1711533}{5356} a^{7} - \frac{163421}{206} a^{6} - \frac{434765}{5356} a^{5} - \frac{105561}{412} a^{4} + \frac{2891}{412} a^{3} - \frac{5211}{206} a^{2} + \frac{7309}{2678} a + \frac{14}{103} \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 264102.546071 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{10}\times D_5$ (as 20T24):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 100
The 40 conjugacy class representatives for $C_{10}\times D_5$
Character table for $C_{10}\times D_5$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{12})\), 10.10.6323239406592.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$71$71.10.0.1$x^{10} - x + 22$$1$$10$$0$$C_{10}$$[\ ]^{10}$
71.10.8.2$x^{10} - 71 x^{5} + 55451$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$