Normalized defining polynomial
\( x^{20} - 310 x^{18} + 43720 x^{16} - 2160 x^{15} - 3692720 x^{14} - 334800 x^{13} + 206810960 x^{12} + 85989600 x^{11} - 8022023552 x^{10} - 4850582400 x^{9} + 219025145760 x^{8} + 72940867200 x^{7} - 3979561633920 x^{6} + 1346584988160 x^{5} + 55180067339520 x^{4} - 43566888614400 x^{3} - 351854399957760 x^{2} + 249655655692800 x + 1312243974648576 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(398483907346819732159008478125000000000000000000000000000000000=2^{33}\cdot 3^{17}\cdot 5^{38}\cdot 11^{5}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1349.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{12} a^{6} + \frac{1}{6} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{7} - \frac{1}{12} a^{5} - \frac{1}{6} a^{3}$, $\frac{1}{24} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{24} a^{9} + \frac{1}{6} a^{3}$, $\frac{1}{1200} a^{10} + \frac{1}{60} a^{8} - \frac{1}{30} a^{6} + \frac{1}{10} a^{5} - \frac{2}{15} a^{4} - \frac{4}{15} a^{2} - \frac{12}{25}$, $\frac{1}{1200} a^{11} + \frac{1}{60} a^{9} - \frac{1}{30} a^{7} + \frac{1}{60} a^{6} + \frac{7}{60} a^{5} - \frac{1}{6} a^{4} + \frac{7}{30} a^{3} - \frac{1}{3} a^{2} - \frac{12}{25} a$, $\frac{1}{7200} a^{12} - \frac{1}{3600} a^{10} + \frac{1}{60} a^{8} + \frac{1}{60} a^{7} - \frac{1}{90} a^{6} - \frac{7}{60} a^{5} + \frac{2}{9} a^{4} + \frac{1}{6} a^{3} + \frac{43}{150} a^{2} - \frac{6}{25}$, $\frac{1}{7200} a^{13} - \frac{1}{3600} a^{11} + \frac{1}{60} a^{9} + \frac{1}{60} a^{8} - \frac{1}{90} a^{7} - \frac{1}{30} a^{6} - \frac{1}{36} a^{5} - \frac{1}{6} a^{4} - \frac{16}{75} a^{3} + \frac{1}{3} a^{2} - \frac{6}{25} a$, $\frac{1}{7200} a^{14} + \frac{1}{3600} a^{10} + \frac{1}{60} a^{9} - \frac{1}{360} a^{8} - \frac{1}{20} a^{5} + \frac{22}{225} a^{4} + \frac{1}{6} a^{3} - \frac{4}{15} a^{2} - \frac{9}{25}$, $\frac{1}{57600} a^{15} - \frac{1}{14400} a^{14} + \frac{1}{28800} a^{13} - \frac{1}{7200} a^{11} - \frac{1}{2880} a^{10} - \frac{1}{720} a^{9} + \frac{17}{1440} a^{8} + \frac{1}{720} a^{7} + \frac{1}{30} a^{6} - \frac{371}{3600} a^{5} - \frac{7}{450} a^{4} - \frac{4}{75} a^{3} + \frac{17}{60} a^{2} - \frac{21}{50} a - \frac{1}{4}$, $\frac{1}{172800} a^{16} + \frac{1}{86400} a^{14} - \frac{1}{21600} a^{12} - \frac{1}{4800} a^{11} - \frac{1}{5400} a^{10} - \frac{1}{160} a^{9} + \frac{43}{2160} a^{8} + \frac{1}{60} a^{7} - \frac{311}{10800} a^{6} - \frac{1}{10} a^{5} - \frac{103}{450} a^{4} - \frac{11}{60} a^{3} + \frac{49}{150} a^{2} - \frac{23}{100} a + \frac{11}{25}$, $\frac{1}{345600} a^{17} + \frac{1}{172800} a^{15} - \frac{1}{43200} a^{13} + \frac{1}{28800} a^{12} - \frac{1}{10800} a^{11} - \frac{1}{14400} a^{10} + \frac{43}{4320} a^{9} + \frac{1}{120} a^{8} - \frac{851}{21600} a^{7} + \frac{1}{72} a^{6} + \frac{77}{900} a^{5} - \frac{17}{72} a^{4} + \frac{49}{300} a^{3} - \frac{79}{200} a^{2} + \frac{11}{50} a - \frac{4}{25}$, $\frac{1}{11802464527380938455978177344000} a^{18} + \frac{29290356240912247506079}{131138494748677093955313081600} a^{17} + \frac{1362019410962824851531119}{2950616131845234613994544336000} a^{16} - \frac{279748204432401583153043}{32784623687169273488828270400} a^{15} + \frac{178782554174697980762421619}{2950616131845234613994544336000} a^{14} - \frac{4131939238444174634275163}{65569247374338546977656540800} a^{13} - \frac{24576938975159896710123163}{1475308065922617306997272168000} a^{12} - \frac{80410797262742770403599}{273205197393077279073568920} a^{11} - \frac{14526162324800154325027039}{737654032961308653498636084000} a^{10} - \frac{261308927245276642391799349}{16392311843584636744414135200} a^{9} + \frac{14408755785211816224581175889}{737654032961308653498636084000} a^{8} - \frac{326256148609002422291156881}{8196155921792318372207067600} a^{7} - \frac{651307856917806731645538827}{40980779608961591861035338000} a^{6} - \frac{3284163389907482455232801}{102451949022403979652588345} a^{5} - \frac{165330265996926246710758822}{2561298725560099491314708625} a^{4} + \frac{52812128166067329407568539}{1366025986965386395367844600} a^{3} + \frac{519747318995297511731351153}{1138354989137821996139870500} a^{2} - \frac{85784170967691498930842497}{227670997827564399227974100} a + \frac{99921680993696840305337909}{569177494568910998069935250}$, $\frac{1}{5785391450895013735797428327951194773123568398695151043135296000} a^{19} - \frac{23339509117737227478490421664863}{1157078290179002747159485665590238954624713679739030208627059200} a^{18} - \frac{6171888925628365542129794882911178163385792150496970216649}{5785391450895013735797428327951194773123568398695151043135296000} a^{17} - \frac{167478344498523688829996788342417915228022088507066648349}{289269572544750686789871416397559738656178419934757552156764800} a^{16} + \frac{3241474638488899721359874108199218953193703759734065049627}{723173931361876716974678540993899346640446049836893880391912000} a^{15} - \frac{67588932654604450728811850387156761269702757215630356327}{1807934828404691792436696352484748366601115124592234700979780} a^{14} + \frac{21874207985491970317483992560891757975404397685057785058681}{361586965680938358487339270496949673320223024918446940195956000} a^{13} + \frac{18988458377860811658348931531501083675533436027086389221001}{289269572544750686789871416397559738656178419934757552156764800} a^{12} - \frac{33769823582742604304766286447839674996549055301323240950911}{90396741420234589621834817624237418330055756229611735048989000} a^{11} - \frac{971541684840174954553873886790624389680096605866582966947}{7231739313618767169746785409938993466404460498368938803919120} a^{10} - \frac{3763510885678699889620867925040491640201366005718063801962561}{361586965680938358487339270496949673320223024918446940195956000} a^{9} + \frac{577755175257669598860076151153861974456299801476784773355791}{36158696568093835848733927049694967332022302491844694019595600} a^{8} - \frac{2118428818307505856435675621431601842792630383977717762471487}{120528988560312786162446423498983224440074341639482313398652000} a^{7} - \frac{3971406290977992890203839112073335513564158882058077496697}{482115954241251144649785693995932897760297366557929253594608} a^{6} + \frac{626375925901420617870913602667707553945525383858812771391731}{6696054920017377009024801305499068024448574535526795188814000} a^{5} + \frac{200807354892945626072413887932733201993873373153376323026307}{1004408238002606551353720195824860203667286180329019278322100} a^{4} - \frac{215480803643268076043311702576589121308450277999579159930307}{3348027460008688504512400652749534012224287267763397594407000} a^{3} + \frac{46341917137141832514933759966181667885068075603773103439947}{133921098400347540180496026109981360488971490710535903776280} a^{2} + \frac{262993425571816898588278673966955604229271044483799106026003}{558004576668114750752066775458255668704047877960566265734500} a + \frac{41960318438200705321143273637939409389484497016386061518013}{111600915333622950150413355091651133740809575592113253146900}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times F_5$ (as 20T42):
| A solvable group of order 160 |
| The 25 conjugacy class representatives for $D_4\times F_5$ |
| Character table for $D_4\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-95}) \), 4.0.9530400.6, 5.1.2531250000.13, 10.0.79324636420898437500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ |
| 2.10.19.33 | $x^{10} - 6 x^{4} + 4 x^{2} - 14$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $3$ | 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.19.3 | $x^{10} + 30$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ |
| 5.10.19.3 | $x^{10} + 30$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |