Normalized defining polynomial
\( x^{20} - 4 x^{19} + 9 x^{18} - 15 x^{17} + 19 x^{16} - 17 x^{15} + 5 x^{14} + 17 x^{13} - 43 x^{12} + 61 x^{11} - 63 x^{10} + 49 x^{9} - 21 x^{8} - 16 x^{7} + 50 x^{6} - 65 x^{5} + 59 x^{4} - 39 x^{3} + 19 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3981511303741455078125=5^{15}\cdot 601^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 601$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{176639} a^{19} + \frac{16856}{176639} a^{18} - \frac{19982}{176639} a^{17} - \frac{45962}{176639} a^{16} - \frac{4008}{176639} a^{15} + \frac{77840}{176639} a^{14} - \frac{45365}{176639} a^{13} - \frac{7013}{176639} a^{12} - \frac{67732}{176639} a^{11} + \frac{9676}{176639} a^{10} - \frac{77139}{176639} a^{9} + \frac{29466}{176639} a^{8} + \frac{87871}{176639} a^{7} + \frac{33751}{176639} a^{6} + \frac{87691}{176639} a^{5} + \frac{1765}{176639} a^{4} + \frac{82607}{176639} a^{3} - \frac{44534}{176639} a^{2} + \frac{49168}{176639} a + \frac{5647}{176639}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{246477}{176639} a^{19} - \frac{992802}{176639} a^{18} + \frac{2241491}{176639} a^{17} - \frac{3719667}{176639} a^{16} + \frac{4654725}{176639} a^{15} - \frac{4114641}{176639} a^{14} + \frac{1056068}{176639} a^{13} + \frac{4462028}{176639} a^{12} - \frac{10826614}{176639} a^{11} + \frac{15122628}{176639} a^{10} - \frac{15288214}{176639} a^{9} + \frac{11483693}{176639} a^{8} - \frac{4473215}{176639} a^{7} - \frac{4561092}{176639} a^{6} + \frac{12807936}{176639} a^{5} - \frac{16104101}{176639} a^{4} + \frac{14032407}{176639} a^{3} - \frac{8914569}{176639} a^{2} + \frac{3995321}{176639} a - \frac{942896}{176639} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1218.45033926 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5^2:C_4$ (as 20T93):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $D_5^2:C_4$ |
| Character table for $D_5^2:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.2.1128753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 601 | Data not computed | ||||||