Normalized defining polynomial
\( x^{20} - 7 x^{19} + 32 x^{18} - 113 x^{17} + 340 x^{16} - 895 x^{15} + 2093 x^{14} - 4272 x^{13} + 7505 x^{12} - 11146 x^{11} + 14456 x^{10} - 18169 x^{9} + 25990 x^{8} - 43261 x^{7} + 72200 x^{6} - 102389 x^{5} + 116494 x^{4} - 101944 x^{3} + 65539 x^{2} - 29474 x + 9391 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(39791453062337649407082511117=43^{2}\cdot 61^{4}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{44174104373484359701727386940259244241957} a^{19} + \frac{8321905491970643587443128216381237701391}{44174104373484359701727386940259244241957} a^{18} + \frac{16203827677720444777087651619542510347030}{44174104373484359701727386940259244241957} a^{17} - \frac{10038081639979105482531288654727803975733}{44174104373484359701727386940259244241957} a^{16} - \frac{12235445149191669285931753037179732733910}{44174104373484359701727386940259244241957} a^{15} + \frac{14002842832622967693372064073523878780403}{44174104373484359701727386940259244241957} a^{14} + \frac{3297928604010149270425733056365440767309}{44174104373484359701727386940259244241957} a^{13} - \frac{12630122246745900754274317875761257086254}{44174104373484359701727386940259244241957} a^{12} - \frac{3747906330463670238098478343078144528871}{44174104373484359701727386940259244241957} a^{11} + \frac{19110516086111144882762136456513095657748}{44174104373484359701727386940259244241957} a^{10} - \frac{16753146588248000253729756507723680494659}{44174104373484359701727386940259244241957} a^{9} - \frac{21326715449635148784485808264164071428444}{44174104373484359701727386940259244241957} a^{8} + \frac{46895311403208764558628020737219737065}{939874561137965100036752913622537111531} a^{7} + \frac{10522040259934633202028664781999675877646}{44174104373484359701727386940259244241957} a^{6} + \frac{15960515893090998552085730716260664276589}{44174104373484359701727386940259244241957} a^{5} - \frac{9101763127146353505240983704949343566858}{44174104373484359701727386940259244241957} a^{4} + \frac{21306764476989026001147164580122364284782}{44174104373484359701727386940259244241957} a^{3} + \frac{10672708927689961128361637468484390573573}{44174104373484359701727386940259244241957} a^{2} + \frac{2745774840870143555772003627623900166805}{44174104373484359701727386940259244241957} a + \frac{10915093034625071295584259503967970396734}{44174104373484359701727386940259244241957}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 699426.279974 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 245760 |
| The 201 conjugacy class representatives for t20n886 are not computed |
| Character table for t20n886 is not computed |
Intermediate fields
| 5.5.24217.1, 10.4.25217912827.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 43.8.0.1 | $x^{8} - 3 x + 18$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 43.8.0.1 | $x^{8} - 3 x + 18$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||