Normalized defining polynomial
\( x^{20} - 2 x^{19} + 10 x^{18} - 23 x^{17} + 70 x^{16} - 161 x^{15} + 320 x^{14} - 478 x^{13} + 799 x^{12} - 734 x^{11} - 191 x^{10} + 1864 x^{9} - 2291 x^{8} + 343 x^{7} + 3691 x^{6} - 6541 x^{5} + 6432 x^{4} - 3710 x^{3} + 1335 x^{2} - 200 x + 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(39791453062337649407082511117=43^{2}\cdot 61^{4}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{7430375186576752820375096268016219} a^{19} + \frac{847825477808896807644015734631283}{7430375186576752820375096268016219} a^{18} - \frac{2283125221403379148167586397088940}{7430375186576752820375096268016219} a^{17} - \frac{1312733414800548434958992578728502}{7430375186576752820375096268016219} a^{16} + \frac{55213002409406507408281012686724}{7430375186576752820375096268016219} a^{15} - \frac{1445338959781066414118134211160252}{7430375186576752820375096268016219} a^{14} + \frac{2219219115309816833341303937650256}{7430375186576752820375096268016219} a^{13} + \frac{615752895365937486965448172354969}{7430375186576752820375096268016219} a^{12} + \frac{1856653583660925277513236735241697}{7430375186576752820375096268016219} a^{11} + \frac{3246108710758821519899664368119885}{7430375186576752820375096268016219} a^{10} - \frac{1494786147980662514924399769413941}{7430375186576752820375096268016219} a^{9} - \frac{1356039561911419385609779262103960}{7430375186576752820375096268016219} a^{8} - \frac{147869239886664127471608890565111}{7430375186576752820375096268016219} a^{7} + \frac{1334964741008791586993664836112494}{7430375186576752820375096268016219} a^{6} + \frac{2163401719432872466133365422324595}{7430375186576752820375096268016219} a^{5} + \frac{2868775166233538438033860190763842}{7430375186576752820375096268016219} a^{4} + \frac{319595196101901251365949199095454}{7430375186576752820375096268016219} a^{3} + \frac{2528877865472798223779407734598382}{7430375186576752820375096268016219} a^{2} - \frac{2734880807018911245221197267174860}{7430375186576752820375096268016219} a - \frac{770927994038060114185532602627646}{7430375186576752820375096268016219}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 747650.158561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 245760 |
| The 201 conjugacy class representatives for t20n886 are not computed |
| Character table for t20n886 is not computed |
Intermediate fields
| 5.5.24217.1, 10.4.25217912827.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 43.8.0.1 | $x^{8} - 3 x + 18$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 43.8.0.1 | $x^{8} - 3 x + 18$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||