Normalized defining polynomial
\( x^{20} - 10 x^{19} + 45 x^{18} - 120 x^{17} + 236 x^{16} - 460 x^{15} + 962 x^{14} - 1744 x^{13} + 2560 x^{12} - 3452 x^{11} + 4808 x^{10} - 6402 x^{9} + 7229 x^{8} - 6630 x^{7} + 4107 x^{6} - 492 x^{5} - 708 x^{4} - 394 x^{3} + 1146 x^{2} - 682 x + 961 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3922025930637479853172889160481=191^{2}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $191, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{18} a^{16} + \frac{1}{18} a^{15} - \frac{2}{9} a^{13} - \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{9} a^{10} + \frac{4}{9} a^{9} - \frac{1}{3} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{6} + \frac{1}{6} a^{5} - \frac{7}{18} a^{4} - \frac{7}{18} a^{3} + \frac{7}{18} a^{2} - \frac{1}{3} a + \frac{1}{18}$, $\frac{1}{18} a^{17} - \frac{1}{18} a^{15} - \frac{2}{9} a^{14} + \frac{1}{18} a^{13} - \frac{1}{6} a^{12} + \frac{2}{9} a^{11} + \frac{1}{18} a^{10} - \frac{5}{18} a^{9} + \frac{2}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{18} a^{5} - \frac{1}{2} a^{4} + \frac{5}{18} a^{3} - \frac{2}{9} a^{2} + \frac{7}{18} a + \frac{4}{9}$, $\frac{1}{4209109465266} a^{18} - \frac{1}{467678829474} a^{17} + \frac{111950440249}{4209109465266} a^{16} - \frac{194085277577}{4209109465266} a^{15} - \frac{387649433254}{2104554732633} a^{14} + \frac{27303184901}{2104554732633} a^{13} - \frac{883892093825}{4209109465266} a^{12} + \frac{161229107897}{2104554732633} a^{11} - \frac{26979639611}{1403036488422} a^{10} + \frac{358153983301}{2104554732633} a^{9} + \frac{1431996923965}{4209109465266} a^{8} - \frac{230865940655}{701518244211} a^{7} + \frac{406782898709}{1403036488422} a^{6} + \frac{445488101189}{1403036488422} a^{5} + \frac{22384616392}{701518244211} a^{4} + \frac{602167142777}{1403036488422} a^{3} - \frac{299073674798}{701518244211} a^{2} - \frac{1319570949109}{4209109465266} a - \frac{54727747705}{135777724686}$, $\frac{1}{41371336934099514} a^{19} + \frac{545}{4596815214899946} a^{18} + \frac{1100560236148345}{41371336934099514} a^{17} + \frac{389048860766953}{41371336934099514} a^{16} - \frac{840641626941241}{20685668467049757} a^{15} + \frac{2146853527322744}{20685668467049757} a^{14} + \frac{3623515089418627}{41371336934099514} a^{13} + \frac{3132617799059243}{20685668467049757} a^{12} + \frac{613900696567861}{13790445644699838} a^{11} - \frac{5934568719565657}{41371336934099514} a^{10} + \frac{7856527455474581}{20685668467049757} a^{9} - \frac{673041939260882}{6895222822349919} a^{8} - \frac{5911449977574775}{13790445644699838} a^{7} - \frac{5467583539024669}{13790445644699838} a^{6} - \frac{29964095530126}{130098543817923} a^{5} + \frac{586668949576735}{6895222822349919} a^{4} - \frac{5189995000140499}{13790445644699838} a^{3} + \frac{801413402416313}{41371336934099514} a^{2} - \frac{10428133057736827}{41371336934099514} a - \frac{554586865571}{16476040196774}$
Class group and class number
$C_{17}$, which has order $17$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795087.603907 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T81):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.0.1980410545982191.1, 10.0.4938679665791.1, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $191$ | 191.4.0.1 | $x^{4} - x + 28$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 191.4.0.1 | $x^{4} - x + 28$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 191.4.0.1 | $x^{4} - x + 28$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 191.4.0.1 | $x^{4} - x + 28$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 191.4.2.1 | $x^{4} + 7067 x^{2} + 13169641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||