Normalized defining polynomial
\( x^{20} - 6 x^{19} + 13 x^{18} - 15 x^{17} + 31 x^{16} - 45 x^{15} + 102 x^{14} - 177 x^{13} + 286 x^{12} - 840 x^{11} - 575 x^{10} + 1470 x^{9} + 6610 x^{8} + 2475 x^{7} - 1800 x^{6} - 975 x^{5} + 3025 x^{4} - 375 x^{3} - 875 x^{2} + 625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38944592868564502539093017578125=3^{10}\cdot 5^{15}\cdot 43^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{2} a^{9} - \frac{2}{5} a^{8} - \frac{3}{10} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{10} a^{13} + \frac{1}{5} a^{11} + \frac{3}{10} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{3}{10} a^{7} + \frac{2}{5} a^{5} + \frac{1}{10} a^{4} - \frac{1}{2} a$, $\frac{1}{10} a^{14} - \frac{1}{2} a^{11} - \frac{2}{5} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{5} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{50} a^{15} - \frac{1}{50} a^{14} - \frac{1}{25} a^{13} - \frac{19}{50} a^{11} + \frac{1}{5} a^{10} + \frac{1}{25} a^{9} + \frac{23}{50} a^{8} - \frac{12}{25} a^{7} - \frac{1}{5} a^{6} - \frac{1}{2} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{12900} a^{16} + \frac{7}{4300} a^{15} + \frac{97}{4300} a^{14} - \frac{69}{2150} a^{13} + \frac{31}{2150} a^{12} + \frac{1399}{4300} a^{11} - \frac{583}{2150} a^{10} - \frac{99}{1075} a^{9} - \frac{131}{300} a^{8} + \frac{987}{2150} a^{7} + \frac{23}{430} a^{6} - \frac{293}{860} a^{5} - \frac{39}{86} a^{4} + \frac{76}{215} a^{3} - \frac{29}{172} a^{2} + \frac{19}{172} a + \frac{1}{516}$, $\frac{1}{12900} a^{17} + \frac{9}{1075} a^{15} - \frac{111}{4300} a^{14} + \frac{52}{1075} a^{13} + \frac{97}{4300} a^{12} - \frac{789}{4300} a^{11} + \frac{1}{430} a^{10} - \frac{809}{12900} a^{9} - \frac{47}{4300} a^{8} - \frac{287}{1075} a^{7} + \frac{289}{860} a^{6} + \frac{259}{860} a^{5} - \frac{139}{430} a^{4} + \frac{7}{860} a^{3} - \frac{15}{43} a^{2} - \frac{41}{129} a + \frac{79}{172}$, $\frac{1}{155509500} a^{18} + \frac{69}{25918250} a^{17} - \frac{793}{38877375} a^{16} - \frac{3645}{414692} a^{15} + \frac{452641}{25918250} a^{14} + \frac{282453}{10367300} a^{13} - \frac{727721}{51836500} a^{12} - \frac{5672631}{12959125} a^{11} + \frac{9441691}{155509500} a^{10} + \frac{3706661}{10367300} a^{9} - \frac{7405897}{15550950} a^{8} - \frac{3593511}{10367300} a^{7} - \frac{2115701}{10367300} a^{6} - \frac{154497}{518365} a^{5} + \frac{181739}{2073460} a^{4} + \frac{88162}{518365} a^{3} - \frac{339491}{1555095} a^{2} - \frac{198641}{414692} a + \frac{2621}{622038}$, $\frac{1}{7643057796272689500} a^{19} + \frac{11522862149}{7643057796272689500} a^{18} - \frac{117417614996357}{7643057796272689500} a^{17} + \frac{7165903711281}{509537186418179300} a^{16} - \frac{8546470590512323}{2547685932090896500} a^{15} - \frac{10812576312646807}{254768593209089650} a^{14} + \frac{38208427171628587}{1273842966045448250} a^{13} + \frac{16977363505034684}{636921483022724125} a^{12} + \frac{760051514441534333}{3821528898136344750} a^{11} + \frac{28991571007134977}{764305779627268950} a^{10} + \frac{4296690860210017}{76430577962726895} a^{9} + \frac{42144395205144971}{254768593209089650} a^{8} + \frac{77321744458609721}{254768593209089650} a^{7} - \frac{8484898348255694}{25476859320908965} a^{6} - \frac{1983466825021810}{5095371864181793} a^{5} - \frac{5733072654144749}{20381487456727172} a^{4} + \frac{1494882296488127}{61144462370181516} a^{3} - \frac{29893365894405389}{61144462370181516} a^{2} + \frac{22644967035878291}{61144462370181516} a - \frac{4811418416790699}{20381487456727172}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26079539.7398 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.2080125.1, 5.1.2080125.1 x5, 10.2.21634600078125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.2080125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $43$ | 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |