Normalized defining polynomial
\( x^{20} + 390 x^{18} - 410 x^{17} + 47525 x^{16} - 23576 x^{15} + 2376790 x^{14} + 1155600 x^{13} + 62913495 x^{12} + 52805040 x^{11} + 1009324309 x^{10} + 579321460 x^{9} + 9051016800 x^{8} - 1620898960 x^{7} + 48159593480 x^{6} - 31559673260 x^{5} + 217327929960 x^{4} - 51110077080 x^{3} + 821957983120 x^{2} + 512305253600 x + 107326429960 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38877457874788447772215025000000000000000000000000=2^{24}\cdot 5^{26}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $301.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{14} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{5604770126614762618682172951330113471478730498452376455066311177296436545364854946169204097054647445941682046319666010604} a^{19} - \frac{367829978229205310247405994164175650318085163074815660258384475509252574053777470068892921202698919440672598965415164789}{5604770126614762618682172951330113471478730498452376455066311177296436545364854946169204097054647445941682046319666010604} a^{18} + \frac{436657950142369937747161465909495463668125699436797122636461383407074027029776738956946662992695682960781292225986560739}{5604770126614762618682172951330113471478730498452376455066311177296436545364854946169204097054647445941682046319666010604} a^{17} + \frac{445154211809258310599475720256503541680772312592763524368929006956239310665084430306618669985485315881867146367342125391}{2802385063307381309341086475665056735739365249226188227533155588648218272682427473084602048527323722970841023159833005302} a^{16} - \frac{257527834540200093250648108172841638061610707710898897391283762791281737075384672369884931912216398662510015791277815791}{5604770126614762618682172951330113471478730498452376455066311177296436545364854946169204097054647445941682046319666010604} a^{15} - \frac{465629660011048605483732371399739885275168459884030815001450116384343740952034277512289103713727641516519167481260619257}{5604770126614762618682172951330113471478730498452376455066311177296436545364854946169204097054647445941682046319666010604} a^{14} - \frac{1307029209500272551615634569202668228721359401527172647967941331497389302349028705484203698292244293930782965023389339649}{5604770126614762618682172951330113471478730498452376455066311177296436545364854946169204097054647445941682046319666010604} a^{13} - \frac{572335610426348128406814519011959857399621454497293370132052075498595657409516295058862011926487623037930082575467682065}{1401192531653690654670543237832528367869682624613094113766577794324109136341213736542301024263661861485420511579916502651} a^{12} - \frac{2729430276507594071712368820057249305195386096141095443657913807847317896082064579061252881223281643751428568696943256003}{5604770126614762618682172951330113471478730498452376455066311177296436545364854946169204097054647445941682046319666010604} a^{11} - \frac{379504364039757261588459224587253082588856432119470578637097562260843117587032322873895162907984234191463107578240112581}{5604770126614762618682172951330113471478730498452376455066311177296436545364854946169204097054647445941682046319666010604} a^{10} - \frac{460182539715821976165642820457402205742386268550957656752455481487164167919754528529778062922679684105990693539039682418}{1401192531653690654670543237832528367869682624613094113766577794324109136341213736542301024263661861485420511579916502651} a^{9} - \frac{1108285786526616017592673535548222404430586404116368166368408815209492031951187309540968046985395539672492089437331482571}{5604770126614762618682172951330113471478730498452376455066311177296436545364854946169204097054647445941682046319666010604} a^{8} + \frac{1352800527535222331943145799499130511281112866834788423354072853261597588944131812253250471574695178668654541836492141401}{5604770126614762618682172951330113471478730498452376455066311177296436545364854946169204097054647445941682046319666010604} a^{7} + \frac{463377854064538603509106322404088590131429643779837066584743232341550712807622928566462256650362269326565245519099221178}{1401192531653690654670543237832528367869682624613094113766577794324109136341213736542301024263661861485420511579916502651} a^{6} - \frac{193337624050239018319800859702544015726525289644779265162962205223017938627104331136324983458095647959814107911330161323}{1401192531653690654670543237832528367869682624613094113766577794324109136341213736542301024263661861485420511579916502651} a^{5} + \frac{498219683752872186291113346569405708023044702057977899656599415227094658696271044590527807306214116237368382788921161107}{2802385063307381309341086475665056735739365249226188227533155588648218272682427473084602048527323722970841023159833005302} a^{4} - \frac{590210978227706304191725963980577087959771107442563022543351073131557638270810544732354645968010173766043247091221934586}{1401192531653690654670543237832528367869682624613094113766577794324109136341213736542301024263661861485420511579916502651} a^{3} - \frac{670431495772099685177230206055533534375085554459111110237955803648924536256980149950391359409174073846833461872458477970}{1401192531653690654670543237832528367869682624613094113766577794324109136341213736542301024263661861485420511579916502651} a^{2} - \frac{518865091234865580967438859999224393797589608872338191509264875576246061808111564560635839688362363795972935642822498963}{1401192531653690654670543237832528367869682624613094113766577794324109136341213736542301024263661861485420511579916502651} a - \frac{258666104688940668827406847402143829789096657264613886295906295914108118477838905809217345052633467649696183631417288852}{1401192531653690654670543237832528367869682624613094113766577794324109136341213736542301024263661861485420511579916502651}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2667020}$, which has order $170689280$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 824768892.422 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5:D_5.Q_8$ (as 20T105):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_5:D_5.Q_8$ |
| Character table for $C_5:D_5.Q_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.27568400.4, 10.10.452563285156250000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $5$ | 5.10.15.16 | $x^{10} - 10 x^{6} + 10$ | $10$ | $1$ | $15$ | $F_{5}\times C_2$ | $[7/4]_{4}^{2}$ |
| 5.10.11.7 | $x^{10} + 5 x^{2} + 10$ | $10$ | $1$ | $11$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| 41 | Data not computed | ||||||