Normalized defining polynomial
\( x^{20} - 6 x^{18} - 3 x^{17} + 61 x^{16} + 196 x^{15} + 270 x^{14} - 1345 x^{13} - 2216 x^{12} - 4079 x^{11} + 18278 x^{10} + 65312 x^{9} + 166118 x^{8} + 262247 x^{7} + 347755 x^{6} + 337297 x^{5} + 278532 x^{4} + 157724 x^{3} + 66967 x^{2} + 16411 x + 3655 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38873271461266729436258307279649=61^{6}\cdot 397^{6}\cdot 439^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 397, 439$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{260435811837764384860902568392619293544586444777119697} a^{19} - \frac{61329036739468406277888934400271126948078926348344948}{260435811837764384860902568392619293544586444777119697} a^{18} + \frac{102129921265691049198867679271301854651001691130740792}{260435811837764384860902568392619293544586444777119697} a^{17} - \frac{124457034219204967834658905309234139506801211413237576}{260435811837764384860902568392619293544586444777119697} a^{16} - \frac{107519614536394576775503067393162810448497210402827706}{260435811837764384860902568392619293544586444777119697} a^{15} + \frac{23521477484904402025702478942616249146880831390774296}{260435811837764384860902568392619293544586444777119697} a^{14} - \frac{100323940747170112407353604477671038536777684519450921}{260435811837764384860902568392619293544586444777119697} a^{13} + \frac{118513926748195040569737546630821347246992704926124238}{260435811837764384860902568392619293544586444777119697} a^{12} - \frac{22317069219105657136546120871040188480130527814725949}{260435811837764384860902568392619293544586444777119697} a^{11} - \frac{61418214711511742947021751016070038359110646157218304}{260435811837764384860902568392619293544586444777119697} a^{10} + \frac{42059408983613679104894110177448542879909081525800693}{260435811837764384860902568392619293544586444777119697} a^{9} + \frac{84555365319412338132485160626359443266292592427112843}{260435811837764384860902568392619293544586444777119697} a^{8} + \frac{72772659063837897595968869202181763045924889144066212}{260435811837764384860902568392619293544586444777119697} a^{7} - \frac{54467924148052560230589097719400077674320014291038100}{260435811837764384860902568392619293544586444777119697} a^{6} + \frac{121068941771605059426613630520342351043697560202647338}{260435811837764384860902568392619293544586444777119697} a^{5} - \frac{74372815284429493674264208930310081663607224086009038}{260435811837764384860902568392619293544586444777119697} a^{4} + \frac{115340149604514522193170275094654615204667387761568086}{260435811837764384860902568392619293544586444777119697} a^{3} + \frac{72592818883370782774202821978541463385882156729740634}{260435811837764384860902568392619293544586444777119697} a^{2} - \frac{49175876447251968842588508002430548606178413635627632}{260435811837764384860902568392619293544586444777119697} a - \frac{121401608511913270285855266609034595031991637025288975}{260435811837764384860902568392619293544586444777119697}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42939873.0844 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.24217.1, 10.4.6234843338951407.1, 10.0.257457296071.1, 10.6.14202376626313.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 397 | Data not computed | ||||||
| 439 | Data not computed | ||||||