Normalized defining polynomial
\( x^{20} + 2 x^{18} + 99 x^{16} + 345 x^{14} + 609 x^{12} + 6808 x^{10} + 17406 x^{8} + 72977 x^{6} + 356580 x^{4} + 541996 x^{2} + 212521 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38873271461266729436258307279649=61^{6}\cdot 397^{6}\cdot 439^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 397, 439$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a - \frac{1}{8}$, $\frac{1}{16} a^{14} + \frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{4} a^{8} - \frac{3}{16} a^{6} - \frac{1}{2} a^{5} - \frac{3}{8} a^{4} - \frac{7}{16} a^{2} - \frac{1}{2} a + \frac{3}{16}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{14} + \frac{1}{32} a^{13} - \frac{1}{32} a^{12} + \frac{7}{32} a^{11} - \frac{7}{32} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{3}{32} a^{7} + \frac{3}{32} a^{6} + \frac{5}{16} a^{5} - \frac{5}{16} a^{4} + \frac{9}{32} a^{3} + \frac{7}{32} a^{2} + \frac{3}{32} a + \frac{13}{32}$, $\frac{1}{64} a^{16} + \frac{3}{32} a^{12} + \frac{13}{64} a^{10} - \frac{7}{64} a^{8} + \frac{13}{64} a^{6} - \frac{1}{2} a^{5} + \frac{15}{64} a^{4} - \frac{3}{32} a^{2} - \frac{3}{64}$, $\frac{1}{128} a^{17} - \frac{1}{128} a^{16} + \frac{3}{64} a^{13} - \frac{3}{64} a^{12} + \frac{13}{128} a^{11} - \frac{13}{128} a^{10} + \frac{25}{128} a^{9} - \frac{25}{128} a^{8} - \frac{19}{128} a^{7} + \frac{19}{128} a^{6} - \frac{49}{128} a^{5} - \frac{15}{128} a^{4} - \frac{19}{64} a^{3} + \frac{19}{64} a^{2} + \frac{61}{128} a + \frac{3}{128}$, $\frac{1}{24266693122027088912128} a^{18} - \frac{62044936742668521517}{24266693122027088912128} a^{16} - \frac{166312031162814679853}{12133346561013544456064} a^{14} + \frac{2742862142511760640799}{24266693122027088912128} a^{12} + \frac{33255599553967808135}{1516668320126693057008} a^{10} - \frac{211064978890076465959}{3033336640253386114016} a^{8} - \frac{958360877551391839453}{12133346561013544456064} a^{6} - \frac{1}{2} a^{5} + \frac{2688308079431226390391}{24266693122027088912128} a^{4} - \frac{1}{2} a^{3} + \frac{4285861618367023674123}{24266693122027088912128} a^{2} - \frac{1}{2} a + \frac{11989562068284408942823}{24266693122027088912128}$, $\frac{1}{22373891058508975976982016} a^{19} - \frac{1}{48533386244054177824256} a^{18} + \frac{56433849987976647852031}{22373891058508975976982016} a^{17} - \frac{317122143289004742735}{48533386244054177824256} a^{16} - \frac{107091428600094675198917}{11186945529254487988491008} a^{15} - \frac{592022128900531848651}{24266693122027088912128} a^{14} - \frac{678999547754436768484297}{22373891058508975976982016} a^{13} - \frac{467859662321721055287}{48533386244054177824256} a^{12} + \frac{937908003086551772043799}{5593472764627243994245504} a^{11} + \frac{2047188311966250036909}{12133346561013544456064} a^{10} + \frac{1262678205397731408607557}{5593472764627243994245504} a^{9} + \frac{1085672347835581144359}{12133346561013544456064} a^{8} - \frac{2713330067884126087666135}{11186945529254487988491008} a^{7} + \frac{3802113977788941321343}{24266693122027088912128} a^{6} - \frac{10388385520188574580435669}{22373891058508975976982016} a^{5} - \frac{23542497481173255924251}{48533386244054177824256} a^{4} + \frac{3261331079090440363598803}{22373891058508975976982016} a^{3} + \frac{20739165663723411766509}{48533386244054177824256} a^{2} - \frac{9213524662182357783572589}{22373891058508975976982016} a + \frac{2797954052950848363005}{48533386244054177824256}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15440650.8773 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.24217.1, 10.4.6234843338951407.2, 10.0.257457296071.1, 10.6.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 397 | Data not computed | ||||||
| 439 | Data not computed | ||||||