Normalized defining polynomial
\( x^{20} + 5 x^{18} + 11 x^{16} - 2 x^{15} + 10 x^{14} - 15 x^{13} + 11 x^{12} - 39 x^{11} + 9 x^{10} - 20 x^{9} + 11 x^{8} + 14 x^{7} + 42 x^{6} + 27 x^{5} + 46 x^{4} + 17 x^{3} + 19 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3884991566777374267578125=5^{15}\cdot 3359^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 3359$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{11206186407419} a^{19} + \frac{1382357461060}{11206186407419} a^{18} - \frac{3661493474063}{11206186407419} a^{17} - \frac{2498688731524}{11206186407419} a^{16} + \frac{4656349804309}{11206186407419} a^{15} + \frac{1371770106011}{11206186407419} a^{14} + \frac{4815965575435}{11206186407419} a^{13} - \frac{689093615574}{11206186407419} a^{12} + \frac{5055110032032}{11206186407419} a^{11} + \frac{5117175536039}{11206186407419} a^{10} - \frac{5346973405207}{11206186407419} a^{9} + \frac{1786190023765}{11206186407419} a^{8} - \frac{4319186207330}{11206186407419} a^{7} - \frac{3092354891830}{11206186407419} a^{6} + \frac{1818846296855}{11206186407419} a^{5} + \frac{3961179661248}{11206186407419} a^{4} + \frac{3853714335089}{11206186407419} a^{3} - \frac{4212794731954}{11206186407419} a^{2} - \frac{490280981011}{11206186407419} a - \frac{3576886184860}{11206186407419}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{110528629712}{11206186407419} a^{19} + \frac{93576025357}{11206186407419} a^{18} + \frac{1837453616367}{11206186407419} a^{17} + \frac{701703112967}{11206186407419} a^{16} + \frac{6642766518714}{11206186407419} a^{15} + \frac{1755114373184}{11206186407419} a^{14} + \frac{10727628967951}{11206186407419} a^{13} - \frac{1178645381313}{11206186407419} a^{12} + \frac{3796355546793}{11206186407419} a^{11} - \frac{18598763311565}{11206186407419} a^{10} + \frac{2148468728584}{11206186407419} a^{9} - \frac{34518886138706}{11206186407419} a^{8} - \frac{6980655423298}{11206186407419} a^{7} + \frac{7551198518324}{11206186407419} a^{6} + \frac{11876955850778}{11206186407419} a^{5} + \frac{36349521736472}{11206186407419} a^{4} + \frac{48666132807425}{11206186407419} a^{3} + \frac{34621167432625}{11206186407419} a^{2} + \frac{33616954797511}{11206186407419} a + \frac{12928134974155}{11206186407419} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34252.1729165 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5^2:C_4$ (as 20T93):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $D_5^2:C_4$ |
| Character table for $D_5^2:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.6.35259003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 3359 | Data not computed | ||||||