Normalized defining polynomial
\( x^{20} - 10 x^{19} + 35 x^{18} - 30 x^{17} - 105 x^{16} + 228 x^{15} + 90 x^{14} - 540 x^{13} + 45 x^{12} + 770 x^{11} + 841 x^{10} - 5630 x^{9} + 65655 x^{8} - 232740 x^{7} + 714510 x^{6} - 1347420 x^{5} + 1836975 x^{4} - 1691250 x^{3} + 1027925 x^{2} - 369350 x + 295975 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38698352640000000000000000000000=2^{38}\cdot 3^{10}\cdot 5^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{9} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{4} - \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{45} a^{10} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{2}{15} a^{5} + \frac{1}{9} a^{4} + \frac{4}{9} a^{3} - \frac{1}{3} a^{2} - \frac{2}{9}$, $\frac{1}{45} a^{11} - \frac{1}{45} a^{6} - \frac{1}{9} a^{5} - \frac{4}{9} a^{3} + \frac{1}{9} a^{2} + \frac{1}{3} a - \frac{4}{9}$, $\frac{1}{135} a^{12} - \frac{1}{27} a^{9} - \frac{2}{45} a^{7} - \frac{2}{27} a^{6} + \frac{1}{9} a^{4} - \frac{2}{27} a^{3} - \frac{1}{3} a^{2} + \frac{1}{9} a - \frac{10}{27}$, $\frac{1}{135} a^{13} + \frac{1}{135} a^{10} - \frac{2}{45} a^{8} + \frac{4}{27} a^{7} + \frac{1}{9} a^{6} - \frac{7}{45} a^{5} + \frac{4}{27} a^{4} + \frac{2}{9} a^{3} + \frac{4}{9} a^{2} - \frac{10}{27} a + \frac{2}{9}$, $\frac{1}{135} a^{14} + \frac{1}{135} a^{11} - \frac{2}{45} a^{9} + \frac{1}{27} a^{8} - \frac{1}{9} a^{7} - \frac{2}{45} a^{6} - \frac{2}{27} a^{5} + \frac{1}{9} a^{4} + \frac{1}{3} a^{3} - \frac{7}{27} a^{2} + \frac{1}{9} a - \frac{4}{9}$, $\frac{1}{135} a^{15} - \frac{1}{27} a^{9} - \frac{1}{9} a^{6} + \frac{1}{15} a^{5} + \frac{13}{27} a^{3} + \frac{1}{3} a + \frac{7}{27}$, $\frac{1}{2025} a^{16} + \frac{7}{2025} a^{15} - \frac{7}{2025} a^{14} - \frac{2}{675} a^{13} + \frac{1}{405} a^{12} - \frac{16}{2025} a^{11} - \frac{2}{2025} a^{10} - \frac{16}{675} a^{9} - \frac{44}{2025} a^{8} + \frac{2}{15} a^{7} + \frac{13}{81} a^{6} + \frac{23}{405} a^{5} - \frac{38}{405} a^{4} + \frac{7}{45} a^{3} + \frac{35}{81} a^{2} + \frac{8}{81} a + \frac{37}{81}$, $\frac{1}{2025} a^{17} + \frac{4}{2025} a^{15} - \frac{2}{2025} a^{14} + \frac{2}{2025} a^{13} - \frac{2}{675} a^{12} + \frac{4}{405} a^{11} + \frac{11}{2025} a^{10} + \frac{37}{2025} a^{9} - \frac{52}{2025} a^{8} - \frac{52}{405} a^{7} - \frac{2}{15} a^{6} - \frac{2}{81} a^{5} - \frac{31}{405} a^{4} + \frac{19}{405} a^{3} + \frac{2}{27} a^{2} - \frac{10}{81} a + \frac{5}{81}$, $\frac{1}{25677298093079475} a^{18} - \frac{1}{2853033121453275} a^{17} - \frac{2760741266878}{25677298093079475} a^{16} + \frac{22085930135228}{25677298093079475} a^{15} + \frac{73213801409584}{25677298093079475} a^{14} + \frac{5778961472237}{2853033121453275} a^{13} - \frac{63858408377516}{25677298093079475} a^{12} - \frac{48887053218647}{25677298093079475} a^{11} + \frac{256165819324412}{25677298093079475} a^{10} - \frac{639998813304214}{25677298093079475} a^{9} - \frac{1375475340534124}{25677298093079475} a^{8} - \frac{211644303652676}{1711819872871965} a^{7} + \frac{802577516171179}{5135459618615895} a^{6} + \frac{784909480873408}{5135459618615895} a^{5} - \frac{775007929960501}{5135459618615895} a^{4} - \frac{560268056162764}{1711819872871965} a^{3} + \frac{216591646063315}{1027091923723179} a^{2} + \frac{77079239273659}{1027091923723179} a - \frac{212880474491000}{1027091923723179}$, $\frac{1}{12858908434735177205775} a^{19} + \frac{50077}{2571781686947035441155} a^{18} + \frac{2942070354393509674}{12858908434735177205775} a^{17} - \frac{11057758667099479}{476255867953154711325} a^{16} - \frac{4662220988255658679}{2571781686947035441155} a^{15} + \frac{33110400802277854861}{12858908434735177205775} a^{14} - \frac{10715158330762339834}{12858908434735177205775} a^{13} + \frac{1382248138372592497}{4286302811578392401925} a^{12} + \frac{36501603102492965363}{12858908434735177205775} a^{11} + \frac{16567696347881607713}{2571781686947035441155} a^{10} + \frac{449792790177043107653}{12858908434735177205775} a^{9} - \frac{9749656991543271154}{676784654459746168725} a^{8} + \frac{6942402174374811769}{514356337389407088231} a^{7} + \frac{21643604128568437622}{285753520771892826795} a^{6} - \frac{84267722161021264714}{2571781686947035441155} a^{5} + \frac{166517212665534963293}{2571781686947035441155} a^{4} - \frac{493033789861229760773}{2571781686947035441155} a^{3} - \frac{20124908868344652982}{171452112463135696077} a^{2} + \frac{16733884768042972816}{514356337389407088231} a - \frac{23983865177859649942}{171452112463135696077}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14476205.398747573 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{5}, \sqrt{-6})\), 5.1.50000.1, 10.2.12500000000.1, 10.0.1244160000000000.16, 10.0.6220800000000000.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |