Normalized defining polynomial
\( x^{20} - 4 x^{19} - 6 x^{18} + 12 x^{17} + 119 x^{16} - 212 x^{15} + 80 x^{14} - 488 x^{13} + 947 x^{12} - 4508 x^{11} + 14200 x^{10} - 28960 x^{9} + 68544 x^{8} - 113416 x^{7} + 191478 x^{6} - 217264 x^{5} + 219800 x^{4} - 150188 x^{3} + 88070 x^{2} - 30108 x + 8462 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(386855836117226742051972447207424=2^{40}\cdot 2657^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2657$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{91894586667404178522673852282649713187904079681} a^{19} - \frac{33817681668980937020917259111960985881877089437}{91894586667404178522673852282649713187904079681} a^{18} + \frac{44617367650340655788382359204852949742318125084}{91894586667404178522673852282649713187904079681} a^{17} + \frac{974425951564338752867777903616151725973769043}{4836557193021272553824939593823669115152846299} a^{16} - \frac{44113699258455339433711628321564401419800525301}{91894586667404178522673852282649713187904079681} a^{15} - \frac{23769733883711559861534892738015279595143185446}{91894586667404178522673852282649713187904079681} a^{14} + \frac{27596000674508591049694948683930991535429862962}{91894586667404178522673852282649713187904079681} a^{13} + \frac{25841091550541238392837871871715937817700926768}{91894586667404178522673852282649713187904079681} a^{12} + \frac{13213824198885780214406355791263979421381107171}{91894586667404178522673852282649713187904079681} a^{11} + \frac{34497367620659901506974849031050386896375398897}{91894586667404178522673852282649713187904079681} a^{10} - \frac{1510363448210525229545097084344375116886267457}{4836557193021272553824939593823669115152846299} a^{9} - \frac{25282663171344599336275353537428923178015620648}{91894586667404178522673852282649713187904079681} a^{8} - \frac{2166569230091817148143811081062968316220674362}{4836557193021272553824939593823669115152846299} a^{7} + \frac{41123712128040301220589942553130753209199218589}{91894586667404178522673852282649713187904079681} a^{6} + \frac{322132093989025561075669392396716412010837837}{2483637477497410230342536548179721978051461613} a^{5} - \frac{666206565833791543298658130439246416893381328}{2483637477497410230342536548179721978051461613} a^{4} - \frac{18989280656336201812223830414379495057089480492}{91894586667404178522673852282649713187904079681} a^{3} + \frac{2605839787741042232167014177103856016799609846}{91894586667404178522673852282649713187904079681} a^{2} + \frac{42948819849295841738875243930521911906798619167}{91894586667404178522673852282649713187904079681} a + \frac{5243668411408393640496211753568180130195939783}{91894586667404178522673852282649713187904079681}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27669372.8595 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 228 conjugacy class representatives for t20n1028 are not computed |
| Character table for t20n1028 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.6.925322313728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.13 | $x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ |
| 2.12.24.342 | $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{5} - 2 x^{4} + 4 x^{3} - 2 x^{2} + 4 x - 2$ | $12$ | $1$ | $24$ | $C_2 \times S_4$ | $[4/3, 4/3, 3]_{3}^{2}$ | |
| 2657 | Data not computed | ||||||