Normalized defining polynomial
\( x^{20} - 4 x^{19} + 18 x^{18} - 43 x^{17} + 112 x^{16} - 179 x^{15} + 296 x^{14} - 285 x^{13} + 209 x^{12} - 79 x^{11} - 207 x^{10} - 250 x^{9} - 307 x^{8} - 318 x^{7} + 230 x^{6} + 610 x^{5} + 22 x^{4} + 533 x^{3} + 2172 x^{2} + 2327 x + 841 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38683347739713238570955145216=2^{15}\cdot 3^{16}\cdot 223^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 223$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{43} a^{18} + \frac{7}{43} a^{17} + \frac{18}{43} a^{16} + \frac{3}{43} a^{15} + \frac{6}{43} a^{14} + \frac{6}{43} a^{12} - \frac{4}{43} a^{11} + \frac{4}{43} a^{10} + \frac{15}{43} a^{9} - \frac{6}{43} a^{8} - \frac{9}{43} a^{7} + \frac{13}{43} a^{6} + \frac{2}{43} a^{5} - \frac{18}{43} a^{4} - \frac{11}{43} a^{2} - \frac{18}{43} a - \frac{17}{43}$, $\frac{1}{394562511836107053706779156840715} a^{19} - \frac{338057672841554951736820429870}{78912502367221410741355831368143} a^{18} + \frac{11896041667972363353650084362276}{30350962448931311823598396680055} a^{17} + \frac{41397069546939778188783369567629}{394562511836107053706779156840715} a^{16} - \frac{68695343960499136675172899513687}{394562511836107053706779156840715} a^{15} + \frac{92290272158161576680113760777633}{394562511836107053706779156840715} a^{14} - \frac{37487361537370435164860632016837}{394562511836107053706779156840715} a^{13} - \frac{80510400593317750142485605606538}{394562511836107053706779156840715} a^{12} - \frac{5428319702346913836467804848123}{394562511836107053706779156840715} a^{11} - \frac{168746130654241316942995554778096}{394562511836107053706779156840715} a^{10} - \frac{2908670680304378908126834429662}{9175872368281559388529747833505} a^{9} + \frac{1735853434488578231502973653261}{394562511836107053706779156840715} a^{8} - \frac{27490586422889175729238696495618}{394562511836107053706779156840715} a^{7} + \frac{34715578478194093137723608803402}{78912502367221410741355831368143} a^{6} - \frac{725225030576638919879958611313}{1835174473656311877705949566701} a^{5} + \frac{3256603577319582732378690856576}{78912502367221410741355831368143} a^{4} + \frac{156521685193890036710578690945722}{394562511836107053706779156840715} a^{3} - \frac{63016649916743538981568003873454}{394562511836107053706779156840715} a^{2} + \frac{148483886349699115160878746884316}{394562511836107053706779156840715} a - \frac{81458656040885157392830021232979}{394562511836107053706779156840715}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 407671.007919 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 40 conjugacy class representatives for t20n365 |
| Character table for t20n365 is not computed |
Intermediate fields
| 10.4.72758649087.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.13 | $x^{10} - 2 x^{8} - 4 x^{6} - 48 x^{2} - 96$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 3 | Data not computed | ||||||
| 223 | Data not computed | ||||||