Normalized defining polynomial
\( x^{20} - 4 x^{19} - 10 x^{18} + 68 x^{17} + 39 x^{16} - 672 x^{15} + 752 x^{14} + 2396 x^{13} - 8045 x^{12} + 6116 x^{11} + 22752 x^{10} - 60492 x^{9} + 8422 x^{8} + 126032 x^{7} - 108124 x^{6} - 108680 x^{5} + 262425 x^{4} - 242232 x^{3} + 161216 x^{2} - 82360 x + 21025 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3839372453113070701618634162176=2^{30}\cdot 11^{10}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{12} - \frac{1}{10} a^{10} + \frac{1}{5} a^{9} + \frac{3}{10} a^{8} - \frac{1}{2} a^{7} + \frac{2}{5} a^{6} - \frac{3}{10} a^{5} - \frac{1}{10} a^{4} - \frac{1}{2} a^{2} + \frac{1}{10} a$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{12} - \frac{1}{10} a^{11} + \frac{1}{10} a^{10} - \frac{1}{2} a^{9} - \frac{1}{5} a^{8} - \frac{1}{10} a^{7} + \frac{1}{10} a^{6} - \frac{2}{5} a^{5} - \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{2}{5} a^{2} + \frac{1}{10} a$, $\frac{1}{10} a^{15} - \frac{1}{5} a^{12} + \frac{1}{10} a^{11} - \frac{1}{10} a^{10} - \frac{3}{10} a^{8} - \frac{2}{5} a^{7} - \frac{1}{2} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{10} a^{2} + \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{10} a^{16} - \frac{1}{10} a^{12} - \frac{1}{10} a^{11} - \frac{1}{5} a^{10} + \frac{1}{10} a^{9} + \frac{1}{5} a^{8} - \frac{1}{2} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{10} a^{3} + \frac{1}{10} a^{2} - \frac{3}{10} a$, $\frac{1}{50} a^{17} - \frac{1}{25} a^{16} - \frac{1}{50} a^{13} + \frac{3}{25} a^{12} + \frac{1}{10} a^{11} + \frac{1}{10} a^{10} - \frac{1}{2} a^{9} - \frac{19}{50} a^{8} - \frac{21}{50} a^{7} + \frac{1}{10} a^{6} + \frac{4}{25} a^{5} + \frac{4}{25} a^{4} + \frac{2}{25} a^{3} - \frac{1}{10} a^{2} + \frac{11}{50} a - \frac{1}{10}$, $\frac{1}{50} a^{18} + \frac{1}{50} a^{16} - \frac{1}{50} a^{14} - \frac{1}{50} a^{13} - \frac{4}{25} a^{12} + \frac{1}{5} a^{11} + \frac{1}{10} a^{10} - \frac{12}{25} a^{9} + \frac{11}{50} a^{8} + \frac{13}{50} a^{7} + \frac{9}{25} a^{6} - \frac{21}{50} a^{5} + \frac{2}{5} a^{4} + \frac{4}{25} a^{3} + \frac{3}{25} a^{2} - \frac{3}{50} a - \frac{1}{5}$, $\frac{1}{148575140954216128587763339516100606048227250} a^{19} + \frac{305073472714198426117131449806103616142421}{74287570477108064293881669758050303024113625} a^{18} - \frac{717392643008053448659216498398925754010504}{74287570477108064293881669758050303024113625} a^{17} + \frac{1072683688626146712550026113586821061763803}{29715028190843225717552667903220121209645450} a^{16} + \frac{493790627327158502146575330349305814557119}{148575140954216128587763339516100606048227250} a^{15} - \frac{3471943840582005846875908782926347936475024}{74287570477108064293881669758050303024113625} a^{14} + \frac{1624496212286109016262828064615146758040449}{148575140954216128587763339516100606048227250} a^{13} + \frac{1469082199023771935676649646386283595908954}{14857514095421612858776333951610060604822725} a^{12} - \frac{418296337810041140106459947816786146262487}{2971502819084322571755266790322012120964545} a^{11} + \frac{15962440176010424530807580642340925592214491}{148575140954216128587763339516100606048227250} a^{10} + \frac{14434413147629375895286615832034802345077494}{74287570477108064293881669758050303024113625} a^{9} + \frac{31893076708191989687170002363948985123675901}{148575140954216128587763339516100606048227250} a^{8} + \frac{4068540423540460287970315876560499035487353}{148575140954216128587763339516100606048227250} a^{7} + \frac{1341743231033102366227452233079967330592409}{14857514095421612858776333951610060604822725} a^{6} + \frac{5238657311140589181469219677812778377713338}{74287570477108064293881669758050303024113625} a^{5} + \frac{74136458884937659834688893187175227889634841}{148575140954216128587763339516100606048227250} a^{4} + \frac{19172838038483817015852670061812400456675578}{74287570477108064293881669758050303024113625} a^{3} + \frac{12908100897933348961859285018252862548542282}{74287570477108064293881669758050303024113625} a^{2} - \frac{1691345763645835035477187942631725602310199}{29715028190843225717552667903220121209645450} a + \frac{9908848980093731795159924925757046392231}{20493122890236707391415633036703531868721}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 698842.003029 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-143}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-286}) \), \(\Q(\sqrt{2}, \sqrt{-143})\), 5.1.20449.1 x5, 10.0.59797108943.2, 10.2.13702319341568.1 x5, 10.0.1959431665844224.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |