Normalized defining polynomial
\( x^{20} + 30 x^{18} - 20 x^{17} + 1360 x^{16} + 36 x^{15} + 45910 x^{14} + 25260 x^{13} + 1241510 x^{12} + 1026700 x^{11} + 25483210 x^{10} + 18779080 x^{9} + 396512975 x^{8} + 224982100 x^{7} + 4538700640 x^{6} + 1783921248 x^{5} + 36060966430 x^{4} + 10079684960 x^{3} + 182832246360 x^{2} + 37137063760 x + 448168676849 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3831916411125625000000000000000000000000000000=2^{30}\cdot 5^{34}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $190.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3800=2^{3}\cdot 5^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3800}(1,·)$, $\chi_{3800}(3269,·)$, $\chi_{3800}(2849,·)$, $\chi_{3800}(1101,·)$, $\chi_{3800}(2509,·)$, $\chi_{3800}(341,·)$, $\chi_{3800}(569,·)$, $\chi_{3800}(3609,·)$, $\chi_{3800}(989,·)$, $\chi_{3800}(1861,·)$, $\chi_{3800}(3041,·)$, $\chi_{3800}(229,·)$, $\chi_{3800}(1521,·)$, $\chi_{3800}(2089,·)$, $\chi_{3800}(1329,·)$, $\chi_{3800}(3381,·)$, $\chi_{3800}(2281,·)$, $\chi_{3800}(761,·)$, $\chi_{3800}(2621,·)$, $\chi_{3800}(1749,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{50} a^{10} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{9}{25} a^{5} + \frac{1}{10} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{7}{50}$, $\frac{1}{50} a^{11} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{9}{25} a^{6} + \frac{1}{10} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{7}{50} a$, $\frac{1}{350} a^{12} - \frac{3}{350} a^{11} - \frac{3}{350} a^{10} - \frac{13}{35} a^{9} + \frac{9}{35} a^{8} + \frac{29}{175} a^{7} + \frac{11}{350} a^{6} - \frac{29}{350} a^{5} + \frac{33}{70} a^{4} - \frac{167}{350} a^{2} - \frac{59}{350} a - \frac{149}{350}$, $\frac{1}{350} a^{13} + \frac{1}{175} a^{11} + \frac{1}{350} a^{10} - \frac{9}{35} a^{9} - \frac{81}{175} a^{8} - \frac{19}{70} a^{7} - \frac{47}{175} a^{6} - \frac{66}{175} a^{5} - \frac{13}{70} a^{4} - \frac{27}{350} a^{3} - \frac{1}{5} a^{2} - \frac{37}{175} a - \frac{27}{350}$, $\frac{1}{350} a^{14} + \frac{12}{25} a^{9} + \frac{1}{70} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{50} a^{4} - \frac{2}{35} a^{2} - \frac{1}{5} a + \frac{6}{35}$, $\frac{1}{2100} a^{15} - \frac{1}{1050} a^{13} - \frac{1}{700} a^{12} - \frac{1}{1050} a^{11} - \frac{1}{100} a^{10} + \frac{59}{420} a^{9} + \frac{79}{350} a^{8} + \frac{253}{1050} a^{7} - \frac{881}{2100} a^{6} + \frac{281}{2100} a^{5} + \frac{137}{420} a^{4} - \frac{149}{525} a^{3} - \frac{59}{2100} a^{2} - \frac{3}{50} a + \frac{823}{2100}$, $\frac{1}{14700} a^{16} + \frac{1}{7350} a^{15} - \frac{1}{735} a^{14} + \frac{11}{14700} a^{13} - \frac{1}{7350} a^{12} - \frac{19}{2100} a^{11} + \frac{17}{2940} a^{10} - \frac{31}{147} a^{9} + \frac{1532}{3675} a^{8} + \frac{6749}{14700} a^{7} + \frac{773}{2940} a^{6} + \frac{6383}{14700} a^{5} + \frac{82}{245} a^{4} - \frac{2259}{4900} a^{3} - \frac{1493}{7350} a^{2} - \frac{6953}{14700} a - \frac{1919}{7350}$, $\frac{1}{14700} a^{17} - \frac{1}{4900} a^{15} + \frac{3}{4900} a^{14} + \frac{3}{2450} a^{13} + \frac{3}{2450} a^{12} + \frac{47}{4900} a^{11} - \frac{47}{4900} a^{10} + \frac{3067}{14700} a^{9} - \frac{5171}{14700} a^{8} - \frac{1209}{4900} a^{7} - \frac{907}{2450} a^{6} - \frac{1061}{2940} a^{5} + \frac{556}{1225} a^{4} - \frac{1054}{3675} a^{3} + \frac{59}{490} a^{2} + \frac{243}{2450} a + \frac{4169}{14700}$, $\frac{1}{328698637326345300} a^{18} - \frac{3925689864589}{164349318663172650} a^{17} + \frac{357700644121}{54783106221057550} a^{16} - \frac{21155447299549}{164349318663172650} a^{15} - \frac{116156835351}{559011287969975} a^{14} - \frac{250599348971309}{328698637326345300} a^{13} - \frac{13165549252369}{54783106221057550} a^{12} + \frac{102778190592142}{11739237047369475} a^{11} - \frac{2397415427009567}{328698637326345300} a^{10} - \frac{16498349960580779}{54783106221057550} a^{9} - \frac{33942869550836123}{328698637326345300} a^{8} + \frac{145700450240992091}{328698637326345300} a^{7} + \frac{50381306781952239}{109566212442115100} a^{6} + \frac{12679675165865668}{82174659331586325} a^{5} + \frac{23193548423839987}{109566212442115100} a^{4} + \frac{41005317947859483}{109566212442115100} a^{3} + \frac{13711540747937807}{65739727465269060} a^{2} + \frac{12636221926050521}{82174659331586325} a - \frac{52300006297717623}{109566212442115100}$, $\frac{1}{16948589957275632100711567362963516864483706603725300} a^{19} - \frac{1512970968308630464399813772698676}{1412382496439636008392630613580293072040308883643775} a^{18} - \frac{30179885125347036325442835142873817351793101004}{1412382496439636008392630613580293072040308883643775} a^{17} - \frac{58865054894465324902555107728335809664176859287}{2824764992879272016785261227160586144080617767287550} a^{16} - \frac{491138327304914113705547021771231130051360853931}{2421227136753661728673081051851930980640529514817900} a^{15} - \frac{1413402859332190474947163944288370570100998392173}{5649529985758544033570522454321172288161235534575100} a^{14} - \frac{229836397379770088271540802338923304446853958964}{605306784188415432168270262962982745160132378704475} a^{13} + \frac{89950964116787447766642769185974777008257490951}{807075712251220576224360350617310326880176504939300} a^{12} - \frac{62902401258174010253095206153020481864115979062291}{16948589957275632100711567362963516864483706603725300} a^{11} + \frac{17126559839573187851354727906237279259665406948753}{2421227136753661728673081051851930980640529514817900} a^{10} - \frac{948790282957774217776895278654108225832764274657539}{8474294978637816050355783681481758432241853301862650} a^{9} + \frac{1866047795784529236276672968688843659152754467059967}{5649529985758544033570522454321172288161235534575100} a^{8} + \frac{4591054785298008565619878877107671870790939690277581}{16948589957275632100711567362963516864483706603725300} a^{7} - \frac{5741624959018841549660193969621674241544110597557021}{16948589957275632100711567362963516864483706603725300} a^{6} - \frac{290463341275384635174017071859252634535832767063906}{847429497863781605035578368148175843224185330186265} a^{5} - \frac{397010018374623225310117214174947628499187991069143}{8474294978637816050355783681481758432241853301862650} a^{4} - \frac{746225723425769531290410278085917928710767912498613}{16948589957275632100711567362963516864483706603725300} a^{3} + \frac{381084135078238979705109731216973199521154236560243}{1129905997151708806714104490864234457632247106915020} a^{2} + \frac{162308623967163081483625994324622721857527734559851}{1129905997151708806714104490864234457632247106915020} a - \frac{46136664100143000091893079284712208559977657999617}{158398036983884412156182872551060905275548659847900}$
Class group and class number
$C_{11652528}$, which has order $11652528$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19344397.966990974 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-95}) \), \(\Q(\sqrt{-38}) \), \(\Q(\sqrt{10}, \sqrt{-38})\), 5.5.390625.1, 10.10.25000000000000000.1, 10.0.1889113616943359375.3, 10.0.12380495000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.5 | $x^{10} + 14 x^{8} + 40 x^{6} - 144 x^{4} - 432 x^{2} + 33632$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.5 | $x^{10} + 14 x^{8} + 40 x^{6} - 144 x^{4} - 432 x^{2} + 33632$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 5 | Data not computed | ||||||
| 19 | Data not computed | ||||||