Normalized defining polynomial
\( x^{20} - 10 x^{19} + 15 x^{18} + 150 x^{17} - 185 x^{16} - 3212 x^{15} + 20610 x^{14} - 69700 x^{13} + 260725 x^{12} - 873790 x^{11} + 4161641 x^{10} - 13885350 x^{9} + 60023285 x^{8} - 164582500 x^{7} + 539014250 x^{6} - 1091599580 x^{5} + 2783495775 x^{4} - 3915754450 x^{3} + 7813521175 x^{2} - 6013728850 x + 9891422465 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3831916411125625000000000000000000000000000000=2^{30}\cdot 5^{34}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $190.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3800=2^{3}\cdot 5^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3800}(1,·)$, $\chi_{3800}(3269,·)$, $\chi_{3800}(2241,·)$, $\chi_{3800}(1481,·)$, $\chi_{3800}(2509,·)$, $\chi_{3800}(721,·)$, $\chi_{3800}(1749,·)$, $\chi_{3800}(3001,·)$, $\chi_{3800}(989,·)$, $\chi_{3800}(229,·)$, $\chi_{3800}(3041,·)$, $\chi_{3800}(2469,·)$, $\chi_{3800}(1521,·)$, $\chi_{3800}(2281,·)$, $\chi_{3800}(1709,·)$, $\chi_{3800}(3229,·)$, $\chi_{3800}(3761,·)$, $\chi_{3800}(949,·)$, $\chi_{3800}(761,·)$, $\chi_{3800}(189,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{56} a^{12} - \frac{3}{28} a^{11} + \frac{3}{56} a^{10} - \frac{1}{28} a^{9} + \frac{1}{14} a^{8} - \frac{1}{4} a^{7} + \frac{3}{56} a^{6} - \frac{3}{28} a^{5} - \frac{13}{28} a^{3} + \frac{23}{56} a^{2} - \frac{11}{28} a - \frac{17}{56}$, $\frac{1}{56} a^{13} - \frac{5}{56} a^{11} + \frac{1}{28} a^{10} + \frac{3}{28} a^{9} - \frac{1}{14} a^{8} + \frac{3}{56} a^{7} - \frac{1}{28} a^{6} + \frac{3}{28} a^{5} - \frac{3}{14} a^{4} - \frac{3}{8} a^{3} + \frac{9}{28} a^{2} + \frac{5}{56} a + \frac{3}{7}$, $\frac{1}{56} a^{14} - \frac{1}{8} a^{10} - \frac{5}{56} a^{8} + \frac{3}{14} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4} - \frac{5}{14} a^{2} + \frac{3}{14} a - \frac{1}{56}$, $\frac{1}{56} a^{15} - \frac{1}{8} a^{11} - \frac{5}{56} a^{9} - \frac{1}{28} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{5}{14} a^{3} + \frac{3}{14} a^{2} - \frac{1}{56} a - \frac{1}{4}$, $\frac{1}{784} a^{16} + \frac{3}{392} a^{15} - \frac{1}{196} a^{12} + \frac{5}{392} a^{11} + \frac{23}{392} a^{10} - \frac{5}{392} a^{9} + \frac{5}{112} a^{8} + \frac{11}{56} a^{7} + \frac{15}{392} a^{6} + \frac{47}{392} a^{5} + \frac{81}{392} a^{4} - \frac{1}{196} a^{3} - \frac{15}{56} a^{2} - \frac{1}{392} a - \frac{9}{784}$, $\frac{1}{784} a^{17} + \frac{3}{392} a^{15} - \frac{1}{196} a^{13} + \frac{3}{392} a^{12} + \frac{1}{14} a^{11} + \frac{11}{392} a^{10} - \frac{59}{784} a^{9} - \frac{1}{14} a^{8} + \frac{23}{98} a^{7} - \frac{85}{392} a^{6} + \frac{15}{196} a^{5} - \frac{12}{49} a^{4} - \frac{51}{392} a^{3} + \frac{167}{392} a^{2} - \frac{207}{784} a + \frac{69}{392}$, $\frac{1}{819749866850002187974516200563984} a^{18} - \frac{9}{819749866850002187974516200563984} a^{17} - \frac{5127621888949261957327287615}{58553561917857299141036871468856} a^{16} + \frac{143573412890579334805164053271}{204937466712500546993629050140996} a^{15} - \frac{1007601063465984412779339157839}{409874933425001093987258100281992} a^{14} + \frac{289733999013087738753518891433}{58553561917857299141036871468856} a^{13} + \frac{1114843493377982700296850794845}{409874933425001093987258100281992} a^{12} - \frac{9994837148708080480540697520243}{204937466712500546993629050140996} a^{11} + \frac{1792706624867597841477659760203}{19063950391860515999407353501488} a^{10} + \frac{9283355298953540942424665340273}{819749866850002187974516200563984} a^{9} - \frac{48556359760463471202552824912563}{409874933425001093987258100281992} a^{8} - \frac{37390986857134533620524532952931}{204937466712500546993629050140996} a^{7} + \frac{763014521601368402948943969275}{102468733356250273496814525070498} a^{6} - \frac{101168985958979469310283525871875}{409874933425001093987258100281992} a^{5} - \frac{26169584258543190126328232807039}{204937466712500546993629050140996} a^{4} + \frac{13986966654140167771340411950287}{102468733356250273496814525070498} a^{3} - \frac{49686084047413691879759979254695}{117107123835714598282073742937712} a^{2} + \frac{322457122038007056996627064864563}{819749866850002187974516200563984} a - \frac{45947498714254437875638247826619}{102468733356250273496814525070498}$, $\frac{1}{77371352588007424660003346551134921690416} a^{19} + \frac{842715}{1381631296214418297500059759841695030186} a^{18} - \frac{20998495176357810451048064831131170587}{77371352588007424660003346551134921690416} a^{17} - \frac{5569113066042326030143150514563849337}{19342838147001856165000836637783730422604} a^{16} - \frac{85885380253948277569581554445308456415}{38685676294003712330001673275567460845208} a^{15} - \frac{541098101642218578554712108143288423}{19342838147001856165000836637783730422604} a^{14} + \frac{34754193169540540406425347701469809549}{9671419073500928082500418318891865211302} a^{13} + \frac{134891798669112400350083446894979316285}{19342838147001856165000836637783730422604} a^{12} - \frac{463477552037516823945302618328306160889}{11053050369715346380000478078733560241488} a^{11} + \frac{1421785298867508808516946254530990496183}{19342838147001856165000836637783730422604} a^{10} - \frac{6471220351337326528171824828988281859433}{77371352588007424660003346551134921690416} a^{9} + \frac{1580275352927939566707709682437311742005}{19342838147001856165000836637783730422604} a^{8} - \frac{7578333746554343425549234126624625329}{690815648107209148750029879920847515093} a^{7} - \frac{2431259617614702355067248797663192134569}{19342838147001856165000836637783730422604} a^{6} + \frac{52968801393826870312514885969991733733}{38685676294003712330001673275567460845208} a^{5} + \frac{1489059933656355174060777124094083531827}{9671419073500928082500418318891865211302} a^{4} + \frac{5321561538273450251165600030969827558225}{11053050369715346380000478078733560241488} a^{3} + \frac{1511046752421499958608947794185306643503}{9671419073500928082500418318891865211302} a^{2} - \frac{38423657226014187032075297246266172497865}{77371352588007424660003346551134921690416} a - \frac{3417753158819160348081704809778885404219}{9671419073500928082500418318891865211302}$
Class group and class number
$C_{22}\times C_{1093510}$, which has order $24057220$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19344397.966990974 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-190}) \), \(\Q(\sqrt{10}, \sqrt{-19})\), 5.5.390625.1, 10.10.25000000000000000.1, 10.0.377822723388671875.3, 10.0.61902475000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.17.29 | $x^{10} - 10 x^{8} + 35$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.29 | $x^{10} - 10 x^{8} + 35$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| 19 | Data not computed | ||||||