Properties

Label 20.0.38242732561...6064.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{26}\cdot 11^{8}\cdot 113^{8}$
Root discriminant $42.57$
Ramified primes $2, 11, 113$
Class number $140$ (GRH)
Class group $[2, 70]$ (GRH)
Galois group 20T230

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![64, 0, 0, 0, 8944, 0, 0, 0, 9316, 0, 0, 0, 2560, 0, 0, 0, 140, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 140*x^16 + 2560*x^12 + 9316*x^8 + 8944*x^4 + 64)
 
gp: K = bnfinit(x^20 + 140*x^16 + 2560*x^12 + 9316*x^8 + 8944*x^4 + 64, 1)
 

Normalized defining polynomial

\( x^{20} + 140 x^{16} + 2560 x^{12} + 9316 x^{8} + 8944 x^{4} + 64 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(382427325615169748862424594776064=2^{26}\cdot 11^{8}\cdot 113^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $42.57$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 113$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{7} + \frac{1}{4} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{3}$, $\frac{1}{314176352} a^{16} - \frac{1}{16} a^{15} - \frac{1}{16} a^{14} + \frac{3073237}{78544088} a^{12} + \frac{534947}{5610292} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{10975221}{78544088} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1234493}{19636022}$, $\frac{1}{628352704} a^{17} + \frac{1}{32} a^{15} + \frac{3073237}{157088176} a^{13} - \frac{433813}{5610292} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{28296823}{157088176} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a^{3} - \frac{18401529}{39272044} a - \frac{1}{2}$, $\frac{1}{628352704} a^{18} - \frac{1}{16} a^{15} - \frac{3372387}{78544088} a^{14} + \frac{534947}{11220584} a^{10} - \frac{1}{4} a^{7} + \frac{10975221}{157088176} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{4291759}{19636022} a^{2} - \frac{1}{2}$, $\frac{1}{1256705408} a^{19} - \frac{3372387}{157088176} a^{15} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{433813}{11220584} a^{11} + \frac{50247265}{314176352} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{4291759}{39272044} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{70}$, which has order $140$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{54443}{44882336} a^{18} - \frac{238281}{1402573} a^{14} - \frac{8737127}{2805146} a^{10} - \frac{128844159}{11220584} a^{6} - \frac{16634282}{1402573} a^{2} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6459109.84372 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T230:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 1920
The 24 conjugacy class representatives for t20n230
Character table for t20n230 is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), 5.5.6180196.1, 10.0.9777874585194496.1, 10.0.9777874585194496.2, 10.10.152779290393664.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 sibling: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.12.18.67$x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{2} + 2$$12$$1$$18$$C_2 \times S_4$$[4/3, 4/3, 2]_{3}^{2}$
$11$11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.6.4.1$x^{6} + 220 x^{3} + 41503$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
11.6.4.1$x^{6} + 220 x^{3} + 41503$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
$113$113.4.0.1$x^{4} - x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
113.4.0.1$x^{4} - x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
113.6.4.1$x^{6} + 3277 x^{3} + 12769000$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
113.6.4.1$x^{6} + 3277 x^{3} + 12769000$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$