Normalized defining polynomial
\( x^{20} - 6 x^{19} + 19 x^{18} - 50 x^{17} + 141 x^{16} - 391 x^{15} + 904 x^{14} - 1750 x^{13} + 3286 x^{12} - 6246 x^{11} + 10834 x^{10} - 16150 x^{9} + 20781 x^{8} - 23886 x^{7} + 26369 x^{6} - 28225 x^{5} + 26886 x^{4} - 21221 x^{3} + 12949 x^{2} - 5575 x + 1355 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(380289177849714310556640625=5^{10}\cdot 7^{10}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{8} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{9} + \frac{1}{5} a^{5}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{6} + \frac{2}{5} a^{2}$, $\frac{1}{25} a^{15} - \frac{2}{25} a^{13} + \frac{2}{25} a^{12} + \frac{2}{25} a^{10} + \frac{9}{25} a^{9} + \frac{6}{25} a^{8} + \frac{7}{25} a^{7} - \frac{9}{25} a^{6} + \frac{8}{25} a^{5} + \frac{12}{25} a^{4} + \frac{7}{25} a^{3} - \frac{8}{25} a^{2} - \frac{2}{5}$, $\frac{1}{25} a^{16} - \frac{2}{25} a^{14} + \frac{2}{25} a^{13} + \frac{2}{25} a^{11} - \frac{1}{25} a^{10} + \frac{6}{25} a^{9} + \frac{7}{25} a^{8} - \frac{9}{25} a^{7} + \frac{3}{25} a^{6} + \frac{12}{25} a^{5} + \frac{7}{25} a^{4} - \frac{8}{25} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{25} a^{17} + \frac{2}{25} a^{14} + \frac{1}{25} a^{13} + \frac{1}{25} a^{12} - \frac{1}{25} a^{11} - \frac{2}{5} a^{9} - \frac{12}{25} a^{8} - \frac{8}{25} a^{7} - \frac{11}{25} a^{6} + \frac{3}{25} a^{5} + \frac{11}{25} a^{4} + \frac{4}{25} a^{3} - \frac{11}{25} a^{2} + \frac{1}{5}$, $\frac{1}{25025} a^{18} + \frac{356}{25025} a^{17} + \frac{307}{25025} a^{16} - \frac{201}{25025} a^{15} - \frac{401}{25025} a^{14} + \frac{157}{25025} a^{13} + \frac{354}{25025} a^{12} + \frac{1753}{25025} a^{11} - \frac{4}{3575} a^{10} - \frac{534}{1925} a^{9} + \frac{6091}{25025} a^{8} - \frac{3008}{25025} a^{7} - \frac{28}{65} a^{6} - \frac{10056}{25025} a^{5} + \frac{11488}{25025} a^{4} - \frac{288}{1925} a^{3} - \frac{7417}{25025} a^{2} - \frac{383}{5005} a - \frac{2368}{5005}$, $\frac{1}{14965277239105652333875} a^{19} - \frac{164502684068795143}{14965277239105652333875} a^{18} - \frac{58007958300581427449}{2993055447821130466775} a^{17} + \frac{2233983358846073603}{2993055447821130466775} a^{16} + \frac{16010411247568682976}{1360479749009604757625} a^{15} + \frac{824906870111117132552}{14965277239105652333875} a^{14} - \frac{8839320322073250274}{598611089564226093355} a^{13} + \frac{2643981489041339677}{598611089564226093355} a^{12} + \frac{44420742561031539873}{2137896748443664619125} a^{11} - \frac{501702679450262402103}{14965277239105652333875} a^{10} - \frac{775194903347827821387}{2993055447821130466775} a^{9} + \frac{56538445545766154129}{272095949801920951525} a^{8} + \frac{45264955829597993526}{164453596034128047625} a^{7} + \frac{509511841159825082919}{1151175172238896333375} a^{6} - \frac{1368533532600503902}{54419189960384190305} a^{5} + \frac{117928641353023330461}{598611089564226093355} a^{4} - \frac{301297311644553046124}{1360479749009604757625} a^{3} - \frac{6978799849252495324078}{14965277239105652333875} a^{2} + \frac{230100168593772826361}{2993055447821130466775} a - \frac{146771935758056816761}{427579349688732923825}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 123933.986843 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-455}) \), \(\Q(\sqrt{-91}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-91})\), 5.1.207025.1 x5, 10.0.19501004534375.1, 10.0.3900200906875.1 x5, 10.2.214296753125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |