Normalized defining polynomial
\( x^{20} - 10 x^{19} + 49 x^{18} - 154 x^{17} + 352 x^{16} - 658 x^{15} + 1097 x^{14} - 1685 x^{13} + 2301 x^{12} - 2747 x^{11} + 2931 x^{10} - 2708 x^{9} + 2371 x^{8} - 1380 x^{7} + 1802 x^{6} - 312 x^{5} + 1202 x^{4} + 189 x^{3} + 469 x^{2} + 110 x + 121 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(380289177849714310556640625=5^{10}\cdot 7^{10}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{91} a^{16} + \frac{3}{13} a^{15} + \frac{11}{91} a^{14} - \frac{5}{13} a^{13} - \frac{12}{91} a^{12} + \frac{1}{13} a^{11} - \frac{44}{91} a^{10} + \frac{5}{13} a^{9} + \frac{3}{13} a^{7} - \frac{33}{91} a^{6} + \frac{5}{13} a^{5} - \frac{36}{91} a^{4} + \frac{4}{13} a^{3} + \frac{2}{91} a^{2} + \frac{6}{13} a + \frac{22}{91}$, $\frac{1}{1001} a^{17} + \frac{3}{1001} a^{16} + \frac{270}{1001} a^{15} + \frac{404}{1001} a^{14} - \frac{201}{1001} a^{13} + \frac{12}{91} a^{12} + \frac{12}{1001} a^{11} + \frac{9}{91} a^{10} + \frac{53}{143} a^{9} + \frac{42}{143} a^{8} + \frac{135}{1001} a^{7} - \frac{190}{1001} a^{6} + \frac{62}{1001} a^{5} - \frac{32}{77} a^{4} + \frac{4}{91} a^{3} - \frac{267}{1001} a^{2} + \frac{85}{1001} a - \frac{36}{91}$, $\frac{1}{1001} a^{18} - \frac{3}{1001} a^{16} + \frac{8}{143} a^{15} - \frac{313}{1001} a^{14} - \frac{5}{143} a^{13} - \frac{219}{1001} a^{12} + \frac{31}{143} a^{11} - \frac{46}{143} a^{10} - \frac{7}{143} a^{9} + \frac{254}{1001} a^{8} - \frac{19}{143} a^{7} + \frac{335}{1001} a^{6} + \frac{24}{143} a^{5} - \frac{215}{1001} a^{4} + \frac{31}{143} a^{3} + \frac{358}{1001} a^{2} + \frac{3}{11} a + \frac{5}{13}$, $\frac{1}{3004911568577743161337} a^{19} + \frac{885712432046709206}{3004911568577743161337} a^{18} + \frac{909409627261228985}{3004911568577743161337} a^{17} - \frac{3473845652699156759}{3004911568577743161337} a^{16} - \frac{396307476057398796053}{3004911568577743161337} a^{15} + \frac{415527381611265255194}{3004911568577743161337} a^{14} + \frac{461698864064176403941}{3004911568577743161337} a^{13} - \frac{570289200194473747062}{3004911568577743161337} a^{12} - \frac{967144425156608732465}{3004911568577743161337} a^{11} + \frac{354889547501867614909}{3004911568577743161337} a^{10} - \frac{1192066683964976681986}{3004911568577743161337} a^{9} - \frac{552219607603133072347}{3004911568577743161337} a^{8} - \frac{626165506089415171582}{3004911568577743161337} a^{7} + \frac{784714026689036008625}{3004911568577743161337} a^{6} + \frac{1372592419654100680941}{3004911568577743161337} a^{5} - \frac{1454969100527797790543}{3004911568577743161337} a^{4} - \frac{73524737333479832168}{231147043736749473949} a^{3} - \frac{1281403742239271177687}{3004911568577743161337} a^{2} + \frac{51093539197274942373}{273173778961613014667} a - \frac{128967445104510282663}{273173778961613014667}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37119.2526304 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-455}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{13}, \sqrt{-35})\), 5.1.207025.1 x5, 10.0.19501004534375.1, 10.0.1500077271875.1 x5, 10.2.557171558125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |