Normalized defining polynomial
\( x^{20} - 10 x^{19} + 47 x^{18} - 138 x^{17} + 247 x^{16} - 140 x^{15} - 632 x^{14} + 2386 x^{13} - 4378 x^{12} + 4350 x^{11} + 269 x^{10} - 9513 x^{9} + 18621 x^{8} - 21290 x^{7} + 15762 x^{6} - 6851 x^{5} + 779 x^{4} + 910 x^{3} - 371 x^{2} - 49 x + 49 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(380289177849714310556640625=5^{10}\cdot 7^{10}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} - \frac{2}{7} a^{8} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{15} - \frac{2}{7} a^{9} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{16} - \frac{2}{7} a^{10} + \frac{1}{7} a^{4}$, $\frac{1}{7} a^{17} - \frac{2}{7} a^{11} + \frac{1}{7} a^{5}$, $\frac{1}{218971981459} a^{18} - \frac{9}{218971981459} a^{17} - \frac{8291536551}{218971981459} a^{16} + \frac{3768869338}{218971981459} a^{15} - \frac{4456982428}{218971981459} a^{14} - \frac{4965191019}{31281711637} a^{13} + \frac{2354768898}{9520520933} a^{12} + \frac{79385850877}{218971981459} a^{11} + \frac{17910279479}{218971981459} a^{10} - \frac{82281220195}{218971981459} a^{9} + \frac{52990756692}{218971981459} a^{8} + \frac{14122292837}{31281711637} a^{7} - \frac{5023529097}{218971981459} a^{6} - \frac{3830575904}{9520520933} a^{5} + \frac{1803369140}{19906543769} a^{4} - \frac{12100621789}{218971981459} a^{3} + \frac{63459753473}{218971981459} a^{2} + \frac{9088164220}{31281711637} a + \frac{2810514490}{31281711637}$, $\frac{1}{127222721227679} a^{19} + \frac{281}{127222721227679} a^{18} - \frac{7953846294959}{127222721227679} a^{17} - \frac{7499695727283}{127222721227679} a^{16} + \frac{1160985749131}{18174674461097} a^{15} - \frac{87519705902}{1652243132827} a^{14} + \frac{15375571765328}{127222721227679} a^{13} - \frac{26256926039591}{127222721227679} a^{12} - \frac{51504511797162}{127222721227679} a^{11} - \frac{63082431539945}{127222721227679} a^{10} + \frac{3409252204990}{18174674461097} a^{9} - \frac{6942681420291}{18174674461097} a^{8} + \frac{26911455078341}{127222721227679} a^{7} + \frac{4148344834012}{127222721227679} a^{6} + \frac{22581168278566}{127222721227679} a^{5} - \frac{21912386152297}{127222721227679} a^{4} - \frac{7651288943973}{18174674461097} a^{3} - \frac{3890805006421}{18174674461097} a^{2} + \frac{1007014211301}{2596382065871} a + \frac{491816139944}{2596382065871}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 74813.5762693 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-455}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{65}) \), \(\Q(\sqrt{-7}, \sqrt{65})\), 5.1.207025.1 x5, 10.0.19501004534375.1, 10.0.300015454375.1 x5, 10.2.2785857790625.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |