Normalized defining polynomial
\( x^{20} - 5 x^{19} + 37 x^{18} - 107 x^{17} + 467 x^{16} - 1170 x^{15} + 4619 x^{14} - 7039 x^{13} + 36318 x^{12} - 62610 x^{11} + 238424 x^{10} - 298521 x^{9} + 1250475 x^{8} - 464666 x^{7} + 3262784 x^{6} + 2705304 x^{5} + 4160432 x^{4} + 4720352 x^{3} + 6042880 x^{2} + 1184384 x + 92416 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3788422819041915442557973663330078125=3^{16}\cdot 5^{15}\cdot 7^{8}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{12} + \frac{1}{10} a^{11} + \frac{1}{10} a^{8} - \frac{1}{2} a^{7} - \frac{1}{10} a^{6} - \frac{1}{2} a^{5} + \frac{1}{10} a^{4} - \frac{1}{2} a^{2} + \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{11} + \frac{1}{10} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{2}{5} a^{2} - \frac{1}{2} a + \frac{2}{5}$, $\frac{1}{20} a^{14} - \frac{1}{20} a^{13} - \frac{1}{20} a^{12} + \frac{1}{20} a^{11} + \frac{1}{20} a^{10} - \frac{1}{10} a^{9} - \frac{1}{4} a^{8} + \frac{7}{20} a^{7} - \frac{1}{10} a^{5} + \frac{3}{10} a^{4} + \frac{1}{20} a^{3} + \frac{9}{20} a^{2} - \frac{3}{10} a - \frac{1}{5}$, $\frac{1}{40} a^{15} - \frac{1}{40} a^{14} + \frac{1}{40} a^{13} + \frac{1}{40} a^{12} - \frac{1}{40} a^{11} - \frac{1}{20} a^{10} + \frac{7}{40} a^{9} - \frac{3}{8} a^{8} + \frac{9}{20} a^{7} + \frac{1}{4} a^{6} + \frac{1}{5} a^{5} - \frac{1}{40} a^{4} - \frac{1}{40} a^{3} + \frac{3}{20} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{80} a^{16} - \frac{1}{80} a^{15} + \frac{1}{80} a^{14} + \frac{1}{80} a^{13} - \frac{1}{80} a^{12} + \frac{9}{40} a^{11} - \frac{13}{80} a^{10} + \frac{1}{16} a^{9} + \frac{9}{40} a^{8} - \frac{1}{8} a^{7} - \frac{2}{5} a^{6} - \frac{1}{80} a^{5} + \frac{39}{80} a^{4} - \frac{7}{40} a^{3} - \frac{3}{10} a^{2} + \frac{1}{10} a$, $\frac{1}{160} a^{17} - \frac{1}{160} a^{16} + \frac{1}{160} a^{15} + \frac{1}{160} a^{14} - \frac{1}{160} a^{13} + \frac{1}{80} a^{12} + \frac{11}{160} a^{11} + \frac{1}{32} a^{10} + \frac{9}{80} a^{9} + \frac{7}{80} a^{8} - \frac{9}{20} a^{7} + \frac{11}{32} a^{6} + \frac{39}{160} a^{5} - \frac{3}{16} a^{4} - \frac{2}{5} a^{3} + \frac{3}{10} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{320} a^{18} - \frac{1}{320} a^{17} + \frac{1}{320} a^{16} + \frac{1}{320} a^{15} - \frac{1}{320} a^{14} + \frac{1}{160} a^{13} + \frac{11}{320} a^{12} - \frac{15}{64} a^{11} + \frac{9}{160} a^{10} + \frac{7}{160} a^{9} - \frac{19}{40} a^{8} - \frac{5}{64} a^{7} - \frac{41}{320} a^{6} + \frac{13}{32} a^{5} + \frac{3}{10} a^{4} + \frac{2}{5} a^{3} - \frac{1}{20} a^{2} + \frac{1}{5} a$, $\frac{1}{23812501798560489581411054813871927802886059779799083935360} a^{19} - \frac{15495952456616827358416600340016638045133500310404993659}{23812501798560489581411054813871927802886059779799083935360} a^{18} - \frac{54184817759006483668099948872557624830414702289872479581}{23812501798560489581411054813871927802886059779799083935360} a^{17} - \frac{88338830838773137490654604708256259885166611866978935361}{23812501798560489581411054813871927802886059779799083935360} a^{16} + \frac{87913471136963172725254413786624044515791539702464885869}{23812501798560489581411054813871927802886059779799083935360} a^{15} - \frac{21289805982148460993103919798105169180001815135151773499}{1190625089928024479070552740693596390144302988989954196768} a^{14} + \frac{1056985515740198942163286028134805760533634112465946679471}{23812501798560489581411054813871927802886059779799083935360} a^{13} + \frac{101312413124793764316018895689958694403432876262595923419}{4762500359712097916282210962774385560577211955959816787072} a^{12} + \frac{213099536955919379136769533132897468519581555128639500693}{2976562724820061197676381851733990975360757472474885491920} a^{11} + \frac{260812391020639514451370243798688928632749989796267892241}{11906250899280244790705527406935963901443029889899541967680} a^{10} + \frac{46326485130090994180271917788482462357322879218213666803}{5953125449640122395352763703467981950721514944949770983840} a^{9} - \frac{10743156524270858810504961304590799527705709307681993424537}{23812501798560489581411054813871927802886059779799083935360} a^{8} + \frac{5300290051932086279196945699700320235752201667124855627393}{23812501798560489581411054813871927802886059779799083935360} a^{7} - \frac{1954886479354090304761167278680870427802889358886622131127}{5953125449640122395352763703467981950721514944949770983840} a^{6} + \frac{54525802875654429678351933212074397613716136678394703621}{1190625089928024479070552740693596390144302988989954196768} a^{5} - \frac{572182622312931402739332975199093948822069704455260558483}{1488281362410030598838190925866995487680378736237442745960} a^{4} + \frac{2022316332622138475290805715952187265765959017080809289}{7259909084926978530918004516424368232587213347499720712} a^{3} - \frac{22343071405218390598302642371512771287719312112435456961}{744140681205015299419095462933497743840189368118721372980} a^{2} - \frac{6093688059961808083510355176350195872303440177780305202}{37207034060250764970954773146674887192009468405936068649} a - \frac{2039439975699405506060800235733781823640827918495395893}{9791324752697569729198624512282865050528807475246333855}$
Class group and class number
$C_{95}$, which has order $95$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{11606485575895960989022814520861931613595524629752705}{4762500359712097916282210962774385560577211955959816787072} a^{19} + \frac{292708611027886675708114660899769655047376235267964673}{23812501798560489581411054813871927802886059779799083935360} a^{18} - \frac{2163058933750098874493593475209425477641169489452931657}{23812501798560489581411054813871927802886059779799083935360} a^{17} + \frac{6325376829192463317318237197341778138169472778901542367}{23812501798560489581411054813871927802886059779799083935360} a^{16} - \frac{5504737612291202103150857685769749367609432841225441019}{4762500359712097916282210962774385560577211955959816787072} a^{15} + \frac{34831563084562899804935002285139968210601027886038076297}{11906250899280244790705527406935963901443029889899541967680} a^{14} - \frac{54650981460612686378425820120077555388549189529664856619}{4762500359712097916282210962774385560577211955959816787072} a^{13} + \frac{426976528836001066901790840887349521135716219599482981403}{23812501798560489581411054813871927802886059779799083935360} a^{12} - \frac{214801239219769809311714508997558488621849965048965617735}{2381250179856048958141105481387192780288605977979908393536} a^{11} + \frac{1888910664970247122296365685907851225285566991352255345557}{11906250899280244790705527406935963901443029889899541967680} a^{10} - \frac{885039090165536058690377433766989666075915852475954197831}{1488281362410030598838190925866995487680378736237442745960} a^{9} + \frac{18348286564658516900008009922021160353839395575848083488301}{23812501798560489581411054813871927802886059779799083935360} a^{8} - \frac{74519897705585996112455560028830860507305650027306233660111}{23812501798560489581411054813871927802886059779799083935360} a^{7} + \frac{16323706800424116933809860554183339095016247672829016004977}{11906250899280244790705527406935963901443029889899541967680} a^{6} - \frac{1535692225980452920247190285392631654343247368725557871252}{186035170301253824854773865733374435960047342029680343245} a^{5} - \frac{8721981240906707115607049968414626843431231425123337359863}{1488281362410030598838190925866995487680378736237442745960} a^{4} - \frac{379585793447716265508626013295307028705485425526804691639}{36299545424634892654590022582121841162936066737498603560} a^{3} - \frac{396087049218914127212388729129837630540872297066280751545}{37207034060250764970954773146674887192009468405936068649} a^{2} - \frac{5238442865565211510336239781680971259001373181193080427419}{372070340602507649709547731466748871920094684059360686490} a - \frac{17345816191882407086737657456871134698281533067385138189}{9791324752697569729198624512282865050528807475246333855} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 631632012.968 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_5:F_5$ (as 20T49):
| A solvable group of order 200 |
| The 20 conjugacy class representatives for $C_2\times C_5:F_5$ |
| Character table for $C_2\times C_5:F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.10.870450781956328125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.10.8.1 | $x^{10} - 899 x^{5} + 204363$ | $5$ | $2$ | $8$ | $D_5$ | $[\ ]_{5}^{2}$ | |