Normalized defining polynomial
\( x^{20} - 10 x^{18} + 65 x^{16} - 400 x^{14} + 1750 x^{12} - 5772 x^{10} + 17350 x^{8} - 36160 x^{6} + 30425 x^{4} + 3350 x^{2} + 361 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37791360000000000000000000000=2^{28}\cdot 3^{10}\cdot 5^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} - \frac{1}{6} a^{6} - \frac{1}{4} a^{4} - \frac{1}{12} a^{2} - \frac{1}{6}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{12} + \frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{8} a^{5} + \frac{3}{8} a^{4} - \frac{5}{12} a^{3} + \frac{5}{12} a^{2} - \frac{5}{24} a - \frac{7}{24}$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{12} - \frac{1}{8} a^{10} - \frac{5}{24} a^{8} + \frac{1}{8} a^{6} - \frac{7}{24} a^{4} + \frac{7}{24} a^{2} - \frac{1}{8}$, $\frac{1}{24} a^{15} - \frac{1}{24} a^{12} - \frac{1}{24} a^{11} - \frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{8} a^{8} - \frac{5}{24} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{3}{8} a^{4} + \frac{3}{8} a^{3} + \frac{5}{12} a^{2} + \frac{5}{12} a - \frac{1}{24}$, $\frac{1}{72} a^{16} - \frac{1}{72} a^{14} + \frac{1}{72} a^{12} + \frac{1}{24} a^{10} + \frac{1}{24} a^{8} - \frac{1}{24} a^{6} - \frac{17}{72} a^{4} - \frac{7}{72} a^{2} - \frac{5}{18}$, $\frac{1}{144} a^{17} - \frac{1}{144} a^{16} + \frac{1}{72} a^{15} - \frac{1}{72} a^{14} - \frac{1}{72} a^{13} - \frac{1}{36} a^{12} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{1}{12} a^{9} - \frac{1}{24} a^{8} - \frac{5}{24} a^{7} + \frac{1}{24} a^{6} - \frac{1}{72} a^{5} - \frac{1}{9} a^{4} + \frac{25}{72} a^{3} + \frac{5}{72} a^{2} - \frac{65}{144} a - \frac{13}{144}$, $\frac{1}{44338212144} a^{18} - \frac{103286291}{44338212144} a^{16} - \frac{59520871}{11084553036} a^{14} + \frac{39674291}{2771138259} a^{12} - \frac{39870397}{2463234008} a^{10} + \frac{100988213}{7389702024} a^{8} - \frac{2057274053}{11084553036} a^{6} - \frac{648930823}{5542276518} a^{4} + \frac{19865967209}{44338212144} a^{2} - \frac{8744816611}{44338212144}$, $\frac{1}{842426030736} a^{19} + \frac{166740748}{52651626921} a^{17} - \frac{1}{144} a^{16} + \frac{2652096517}{421213015368} a^{15} - \frac{1}{72} a^{14} - \frac{7996020449}{421213015368} a^{13} - \frac{1}{36} a^{12} + \frac{836769091}{11700361538} a^{11} - \frac{1}{24} a^{10} - \frac{3593862799}{140404338456} a^{9} + \frac{5}{24} a^{8} - \frac{1343409847}{421213015368} a^{7} + \frac{1}{24} a^{6} - \frac{66331903249}{421213015368} a^{5} + \frac{7}{18} a^{4} - \frac{96521839669}{842426030736} a^{3} + \frac{5}{72} a^{2} + \frac{210390806767}{421213015368} a + \frac{23}{144}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{5025}{48549218} a^{19} - \frac{227325}{97098436} a^{17} + \frac{382316}{24274609} a^{15} - \frac{4775355}{48549218} a^{13} + \frac{51157935}{97098436} a^{11} - \frac{175527875}{97098436} a^{9} + \frac{134281725}{24274609} a^{7} - \frac{707859771}{48549218} a^{5} + \frac{1536315655}{97098436} a^{3} + \frac{85556970}{24274609} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5376688.032388041 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{15})\), 5.1.50000.1, 10.2.194400000000000.1, 10.0.3037500000000.2, 10.0.160000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ |
| 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.10.11.7 | $x^{10} + 5 x^{2} + 10$ | $10$ | $1$ | $11$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ |
| 5.10.11.7 | $x^{10} + 5 x^{2} + 10$ | $10$ | $1$ | $11$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ |