Normalized defining polynomial
\( x^{20} - 3 x^{19} + 4 x^{18} + 49 x^{17} - 304 x^{16} + 896 x^{15} - 925 x^{14} - 430 x^{13} + 23172 x^{12} - 65765 x^{11} + 260740 x^{10} - 628428 x^{9} + 1189621 x^{8} - 1893958 x^{7} + 1460216 x^{6} + 4125524 x^{5} - 10987249 x^{4} + 26088780 x^{3} - 19502880 x^{2} - 28170920 x + 65098640 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3760312697824452795491478057861328125=3^{16}\cdot 5^{15}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{15} + \frac{1}{6} a^{14} + \frac{1}{6} a^{13} - \frac{1}{2} a^{12} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{2} a^{9} + \frac{1}{6} a^{8} - \frac{1}{2} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{6} a^{16} - \frac{1}{6} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{6} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{17} - \frac{1}{6} a^{14} + \frac{1}{6} a^{13} - \frac{1}{3} a^{12} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{3} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{6} a$, $\frac{1}{12} a^{18} - \frac{1}{12} a^{17} - \frac{1}{12} a^{15} + \frac{1}{6} a^{14} - \frac{1}{4} a^{12} + \frac{1}{3} a^{10} + \frac{5}{12} a^{9} - \frac{1}{2} a^{8} - \frac{1}{3} a^{7} + \frac{1}{4} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a^{3} - \frac{1}{12} a^{2} - \frac{1}{3} a$, $\frac{1}{546645493224105492662392874001618824391391984208474128978475480333628504} a^{19} - \frac{14248653946929169796182759962989303843629069671123230290360558273278743}{546645493224105492662392874001618824391391984208474128978475480333628504} a^{18} + \frac{10603612331580392196993575463584126498432031037892081181930959211992225}{136661373306026373165598218500404706097847996052118532244618870083407126} a^{17} - \frac{19297844378723840784738366317286270170306032265257652976509098037872135}{546645493224105492662392874001618824391391984208474128978475480333628504} a^{16} - \frac{2100448184997456531396419604217731945420368012442086315896697197770871}{45553791102008791055199406166801568699282665350706177414872956694469042} a^{15} - \frac{1973485370854872905083395788424621353434969970771180871691484069624322}{22776895551004395527599703083400784349641332675353088707436478347234521} a^{14} - \frac{75349527846499771946606291071562344313827485598740108951123873598895081}{546645493224105492662392874001618824391391984208474128978475480333628504} a^{13} + \frac{83441499564851091152494426795196561232701455586994518238928965107946671}{273322746612052746331196437000809412195695992104237064489237740166814252} a^{12} + \frac{2634649483402624264053684933932399915789352577679882998587843381723365}{136661373306026373165598218500404706097847996052118532244618870083407126} a^{11} + \frac{214454451540887392005527737624607107485445433003733075083335842844715519}{546645493224105492662392874001618824391391984208474128978475480333628504} a^{10} + \frac{7247087335350399552230574843911751833043528797427076092756103680994508}{22776895551004395527599703083400784349641332675353088707436478347234521} a^{9} - \frac{5928968122620766129652615788918131324842609673079265574072037220959259}{45553791102008791055199406166801568699282665350706177414872956694469042} a^{8} - \frac{219561402809970182390046390352333208075217787748387097140211024010001383}{546645493224105492662392874001618824391391984208474128978475480333628504} a^{7} - \frac{3799438518384148416487577425861852501789170010027665862597084080386969}{273322746612052746331196437000809412195695992104237064489237740166814252} a^{6} + \frac{2416942214468895176818270131269885224997818897104712827832941441289271}{68330686653013186582799109250202353048923998026059266122309435041703563} a^{5} - \frac{17817001285335138238636786994886898689266695948735479246216533645333285}{68330686653013186582799109250202353048923998026059266122309435041703563} a^{4} + \frac{173752919241455570902473128451905329840282980228840562118639438680617535}{546645493224105492662392874001618824391391984208474128978475480333628504} a^{3} + \frac{52795510824407056846334733919258700867958003669828750140744837150925227}{136661373306026373165598218500404706097847996052118532244618870083407126} a^{2} - \frac{62986001120551757078067855864120117538668872880677103820587340846942615}{136661373306026373165598218500404706097847996052118532244618870083407126} a + \frac{305655546632288410416228955072194389744464133752972928853336825911949}{22776895551004395527599703083400784349641332675353088707436478347234521}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5918089885.052663 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{85}) \), 4.0.614125.2, 5.1.2926125.1, 10.2.727787638828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||