Normalized defining polynomial
\( x^{20} - 5 x^{19} + 31 x^{18} - 80 x^{17} + 427 x^{16} - 1916 x^{15} + 1703 x^{14} - 127 x^{13} + 16595 x^{12} - 9645 x^{11} + 18813 x^{10} - 85065 x^{9} + 55855 x^{8} - 2255 x^{7} + 181783 x^{6} + 41942 x^{5} - 86572 x^{4} - 127378 x^{3} - 105289 x^{2} + 109286 x + 132281 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3760312697824452795491478057861328125=3^{16}\cdot 5^{15}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{2}{9} a^{9} - \frac{2}{9} a^{8} - \frac{1}{9} a^{7} + \frac{4}{9} a^{6} - \frac{4}{9} a^{5} - \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{9} a^{2} + \frac{2}{9}$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{18} a^{8} - \frac{7}{18} a^{7} + \frac{1}{18} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} + \frac{1}{18} a^{2} + \frac{5}{18} a + \frac{7}{18}$, $\frac{1}{54} a^{15} - \frac{1}{54} a^{14} - \frac{1}{54} a^{13} - \frac{1}{18} a^{12} + \frac{7}{54} a^{11} + \frac{1}{54} a^{10} + \frac{17}{54} a^{9} - \frac{5}{18} a^{8} + \frac{5}{18} a^{7} - \frac{23}{54} a^{6} + \frac{23}{54} a^{5} + \frac{17}{54} a^{4} - \frac{1}{2} a^{3} + \frac{19}{54} a^{2} - \frac{23}{54} a - \frac{5}{27}$, $\frac{1}{54} a^{16} + \frac{1}{54} a^{14} - \frac{1}{54} a^{13} + \frac{7}{54} a^{12} + \frac{5}{54} a^{11} - \frac{1}{18} a^{10} - \frac{19}{54} a^{9} - \frac{1}{2} a^{8} + \frac{19}{54} a^{7} + \frac{1}{6} a^{6} + \frac{7}{54} a^{5} - \frac{25}{54} a^{4} - \frac{5}{54} a^{3} + \frac{11}{54} a^{2} - \frac{1}{3} a - \frac{13}{54}$, $\frac{1}{162} a^{17} + \frac{1}{162} a^{16} + \frac{1}{162} a^{15} + \frac{1}{27} a^{13} + \frac{2}{27} a^{12} - \frac{8}{81} a^{11} + \frac{7}{81} a^{10} - \frac{32}{81} a^{9} + \frac{14}{81} a^{8} + \frac{32}{81} a^{7} - \frac{1}{81} a^{6} - \frac{1}{3} a^{5} + \frac{7}{27} a^{4} + \frac{13}{27} a^{3} + \frac{11}{162} a^{2} + \frac{41}{162} a - \frac{49}{162}$, $\frac{1}{1763694} a^{18} + \frac{559}{881847} a^{17} + \frac{1174}{881847} a^{16} + \frac{8515}{1763694} a^{15} + \frac{2336}{293949} a^{14} + \frac{9596}{293949} a^{13} + \frac{52057}{881847} a^{12} + \frac{24503}{881847} a^{11} + \frac{34004}{881847} a^{10} - \frac{113245}{293949} a^{9} + \frac{190198}{881847} a^{8} - \frac{428339}{881847} a^{7} - \frac{139438}{881847} a^{6} + \frac{48752}{293949} a^{5} - \frac{17870}{293949} a^{4} - \frac{16969}{92826} a^{3} + \frac{226022}{881847} a^{2} + \frac{147758}{881847} a + \frac{537821}{1763694}$, $\frac{1}{682248002511778697161090517490579580356509918658} a^{19} + \frac{55789708699598081659475266880611961697}{935868316202714262223718130988449355770246802} a^{18} - \frac{431866841677584885716771756915080457215917389}{682248002511778697161090517490579580356509918658} a^{17} + \frac{992659807794834880221891975829307634719115781}{227416000837259565720363505830193193452169972886} a^{16} + \frac{168375663434954257129412040805331606335922720}{341124001255889348580545258745289790178254959329} a^{15} - \frac{2840094798902705560723913284806384885532128932}{113708000418629782860181752915096596726084986443} a^{14} + \frac{2448595866854993201316401119760182290033698524}{48732000179412764082935036963612827168322137047} a^{13} + \frac{10745038822538925310733938159839903287026018717}{113708000418629782860181752915096596726084986443} a^{12} + \frac{47720274046343420904184624775754944631961195081}{341124001255889348580545258745289790178254959329} a^{11} + \frac{21035003209186583462831303783855501145951428168}{341124001255889348580545258745289790178254959329} a^{10} - \frac{167690065346977910302832242755622237846175185832}{341124001255889348580545258745289790178254959329} a^{9} - \frac{166592992446788769385527494729687118572008156837}{341124001255889348580545258745289790178254959329} a^{8} - \frac{40350372623117546613168134495644734930334076771}{113708000418629782860181752915096596726084986443} a^{7} - \frac{57261623267343441955463177768007654641805569251}{341124001255889348580545258745289790178254959329} a^{6} + \frac{3631889502526083077199901265303070553012770178}{37902666806209927620060584305032198908694995481} a^{5} + \frac{1514324219940149197229540713421111489474157101}{5129684229411869903466845996169771280876014426} a^{4} + \frac{10817233615633335478554647768903843214959238091}{75805333612419855240121168610064397817389990962} a^{3} + \frac{339567091889821551109592072349361467688082160017}{682248002511778697161090517490579580356509918658} a^{2} + \frac{23749657515621163434431056389851647669541209}{1154395943336342973199814750407072047980558238} a + \frac{4427634042611373057086852885002053435541319287}{17953894802941544662133960986594199483066050491}$
Class group and class number
$C_{20}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5918089885.052663 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{85}) \), 4.0.614125.1, 5.1.2926125.1, 10.2.727787638828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||