Properties

Label 20.0.37535144662...4784.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 11^{9}\cdot 19^{15}$
Root discriminant $53.55$
Ramified primes $2, 11, 19$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_5\times C_5:D_4$ (as 20T53)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![27237089, 0, -27237089, 0, 12901779, 0, 0, 0, 679041, 0, -144039, 0, 25270, 0, -1444, 0, 152, 0, -19, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 19*x^18 + 152*x^16 - 1444*x^14 + 25270*x^12 - 144039*x^10 + 679041*x^8 + 12901779*x^4 - 27237089*x^2 + 27237089)
 
gp: K = bnfinit(x^20 - 19*x^18 + 152*x^16 - 1444*x^14 + 25270*x^12 - 144039*x^10 + 679041*x^8 + 12901779*x^4 - 27237089*x^2 + 27237089, 1)
 

Normalized defining polynomial

\( x^{20} - 19 x^{18} + 152 x^{16} - 1444 x^{14} + 25270 x^{12} - 144039 x^{10} + 679041 x^{8} + 12901779 x^{4} - 27237089 x^{2} + 27237089 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(37535144662134652842245124374134784=2^{20}\cdot 11^{9}\cdot 19^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $53.55$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{19} a^{4}$, $\frac{1}{19} a^{5}$, $\frac{1}{19} a^{6}$, $\frac{1}{19} a^{7}$, $\frac{1}{361} a^{8}$, $\frac{1}{361} a^{9}$, $\frac{1}{361} a^{10}$, $\frac{1}{361} a^{11}$, $\frac{1}{6859} a^{12}$, $\frac{1}{6859} a^{13}$, $\frac{1}{6859} a^{14}$, $\frac{1}{6859} a^{15}$, $\frac{1}{912247} a^{16} + \frac{1}{48013} a^{14} - \frac{2}{48013} a^{12} - \frac{2}{2527} a^{8} + \frac{3}{133} a^{6} + \frac{1}{133} a^{4} - \frac{2}{7} a^{2} + \frac{3}{7}$, $\frac{1}{912247} a^{17} + \frac{1}{48013} a^{15} - \frac{2}{48013} a^{13} - \frac{2}{2527} a^{9} + \frac{3}{133} a^{7} + \frac{1}{133} a^{5} - \frac{2}{7} a^{3} + \frac{3}{7} a$, $\frac{1}{2044504315065505013} a^{18} + \frac{386596758813}{2044504315065505013} a^{16} + \frac{234221745085}{107605490266605527} a^{14} - \frac{5584345690163}{107605490266605527} a^{12} - \frac{6973697158633}{5663446856137133} a^{10} - \frac{265612198379}{298076150323007} a^{8} - \frac{2635905281558}{298076150323007} a^{6} - \frac{4757856702762}{298076150323007} a^{4} - \frac{1561908013805}{15688218438053} a^{2} - \frac{4336042725585}{15688218438053}$, $\frac{1}{2044504315065505013} a^{19} + \frac{386596758813}{2044504315065505013} a^{17} + \frac{234221745085}{107605490266605527} a^{15} - \frac{5584345690163}{107605490266605527} a^{13} - \frac{6973697158633}{5663446856137133} a^{11} - \frac{265612198379}{298076150323007} a^{9} - \frac{2635905281558}{298076150323007} a^{7} - \frac{4757856702762}{298076150323007} a^{5} - \frac{1561908013805}{15688218438053} a^{3} - \frac{4336042725585}{15688218438053} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1175128454.6309361 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_5\times C_5:D_4$ (as 20T53):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 200
The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed
Character table for $C_5\times C_5:D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-19}) \), 4.0.1207184.1, 10.0.36252565459.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{10}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ R ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ $20$ $20$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ $20$ $20$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.5.0.1$x^{5} + x^{2} - x + 5$$1$$5$$0$$C_5$$[\ ]^{5}$
11.5.0.1$x^{5} + x^{2} - x + 5$$1$$5$$0$$C_5$$[\ ]^{5}$
11.10.9.10$x^{10} + 24057$$10$$1$$9$$C_{10}$$[\ ]_{10}$
19Data not computed