Normalized defining polynomial
\( x^{20} - 11 x^{18} + 60 x^{16} - 211 x^{14} + 613 x^{12} - 1523 x^{10} + 2633 x^{8} - 1847 x^{6} + 564 x^{4} + 253 x^{2} + 121 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3749387161243233107049447424=2^{20}\cdot 11^{10}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{55} a^{14} - \frac{5}{11} a^{12} - \frac{24}{55} a^{10} - \frac{3}{55} a^{8} + \frac{16}{55} a^{6} + \frac{17}{55} a^{4} + \frac{1}{11} a^{2} + \frac{2}{5}$, $\frac{1}{55} a^{15} - \frac{5}{11} a^{13} - \frac{24}{55} a^{11} - \frac{3}{55} a^{9} + \frac{16}{55} a^{7} + \frac{17}{55} a^{5} + \frac{1}{11} a^{3} + \frac{2}{5} a$, $\frac{1}{715} a^{16} + \frac{1}{715} a^{14} - \frac{289}{715} a^{12} + \frac{18}{65} a^{10} - \frac{62}{715} a^{8} - \frac{282}{715} a^{6} + \frac{337}{715} a^{4} + \frac{207}{715} a^{2} - \frac{8}{65}$, $\frac{1}{715} a^{17} + \frac{1}{715} a^{15} - \frac{289}{715} a^{13} + \frac{18}{65} a^{11} - \frac{62}{715} a^{9} - \frac{282}{715} a^{7} + \frac{337}{715} a^{5} + \frac{207}{715} a^{3} - \frac{8}{65} a$, $\frac{1}{166647108485} a^{18} + \frac{105866496}{166647108485} a^{16} + \frac{1206325072}{166647108485} a^{14} + \frac{46380643213}{166647108485} a^{12} + \frac{50320773384}{166647108485} a^{10} + \frac{13277393407}{33329421697} a^{8} + \frac{33645679588}{166647108485} a^{6} - \frac{6873420146}{166647108485} a^{4} + \frac{71691417092}{166647108485} a^{2} + \frac{4963336127}{15149737135}$, $\frac{1}{1833118193335} a^{19} + \frac{4727374}{15149737135} a^{17} - \frac{7417371451}{1833118193335} a^{15} - \frac{361030749279}{1833118193335} a^{13} - \frac{139167477243}{1833118193335} a^{11} - \frac{768480085543}{1833118193335} a^{9} - \frac{743186226119}{1833118193335} a^{7} + \frac{328984598493}{1833118193335} a^{5} + \frac{289381486078}{1833118193335} a^{3} - \frac{62394725904}{166647108485} a$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 314252.606616 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-143}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{11}, \sqrt{-13})\), 5.1.20449.1 x5, 10.0.59797108943.2, 10.0.5566567232512.1 x5, 10.2.4710172273664.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |