Normalized defining polynomial
\( x^{20} - 3 x^{19} + 30 x^{18} - 49 x^{17} + 479 x^{16} - 700 x^{15} + 4546 x^{14} - 4405 x^{13} + 26875 x^{12} - 26202 x^{11} + 94832 x^{10} - 61853 x^{9} + 183245 x^{8} - 143454 x^{7} + 188321 x^{6} - 72035 x^{5} + 50332 x^{4} - 16237 x^{3} + 9324 x^{2} - 2047 x + 529 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(374049460594333053432589974619761=3^{10}\cdot 11^{16}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(429=3\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{429}(64,·)$, $\chi_{429}(1,·)$, $\chi_{429}(196,·)$, $\chi_{429}(389,·)$, $\chi_{429}(14,·)$, $\chi_{429}(25,·)$, $\chi_{429}(155,·)$, $\chi_{429}(92,·)$, $\chi_{429}(157,·)$, $\chi_{429}(350,·)$, $\chi_{429}(287,·)$, $\chi_{429}(38,·)$, $\chi_{429}(103,·)$, $\chi_{429}(298,·)$, $\chi_{429}(235,·)$, $\chi_{429}(53,·)$, $\chi_{429}(311,·)$, $\chi_{429}(313,·)$, $\chi_{429}(170,·)$, $\chi_{429}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} + \frac{2}{11} a^{12} - \frac{5}{11} a^{9} - \frac{2}{11} a^{6} + \frac{4}{11} a^{3} - \frac{1}{11}$, $\frac{1}{11} a^{16} + \frac{2}{11} a^{13} - \frac{5}{11} a^{10} - \frac{2}{11} a^{7} + \frac{4}{11} a^{4} - \frac{1}{11} a$, $\frac{1}{253} a^{17} - \frac{7}{253} a^{16} - \frac{4}{253} a^{15} + \frac{79}{253} a^{14} - \frac{3}{253} a^{13} + \frac{3}{253} a^{12} + \frac{28}{253} a^{11} + \frac{35}{253} a^{10} - \frac{2}{253} a^{9} + \frac{64}{253} a^{8} + \frac{124}{253} a^{7} + \frac{107}{253} a^{6} - \frac{62}{253} a^{5} + \frac{5}{253} a^{4} + \frac{72}{253} a^{3} - \frac{45}{253} a^{2} + \frac{117}{253} a + \frac{4}{11}$, $\frac{1}{122396593} a^{18} + \frac{54267}{122396593} a^{17} - \frac{646561}{122396593} a^{16} - \frac{1102632}{122396593} a^{15} + \frac{60248966}{122396593} a^{14} + \frac{32460818}{122396593} a^{13} + \frac{19271457}{122396593} a^{12} - \frac{13321020}{122396593} a^{11} - \frac{11219336}{122396593} a^{10} + \frac{11507574}{122396593} a^{9} + \frac{28597572}{122396593} a^{8} - \frac{47015765}{122396593} a^{7} - \frac{21855281}{122396593} a^{6} - \frac{53552846}{122396593} a^{5} + \frac{28577174}{122396593} a^{4} + \frac{49500353}{122396593} a^{3} - \frac{35596345}{122396593} a^{2} + \frac{12701186}{122396593} a + \frac{2550377}{5321591}$, $\frac{1}{152970499338580414732511056113098813591} a^{19} + \frac{1189183333766785564283863929}{323404861180931109371059315249680367} a^{18} - \frac{77131062159028408078527643294974520}{152970499338580414732511056113098813591} a^{17} + \frac{5194241081028357112600781348708716809}{152970499338580414732511056113098813591} a^{16} + \frac{72068327717693978947583525144680528}{3557453472990242203081652467746484037} a^{15} + \frac{7431739769714445613704182922833507919}{152970499338580414732511056113098813591} a^{14} + \frac{2788397861470875795746589334137028018}{6650891275590452814457002439699948417} a^{13} + \frac{55503250730078458440005827135695899639}{152970499338580414732511056113098813591} a^{12} + \frac{67523911782608779948677862460155071494}{152970499338580414732511056113098813591} a^{11} + \frac{17047351272760791936323841012136544305}{152970499338580414732511056113098813591} a^{10} - \frac{1081016206559519859351017602466945866}{3557453472990242203081652467746484037} a^{9} + \frac{76351763022774364284660659063318380431}{152970499338580414732511056113098813591} a^{8} + \frac{51501444290365864838992559421175361361}{152970499338580414732511056113098813591} a^{7} + \frac{59863518412672914460980432140504751358}{152970499338580414732511056113098813591} a^{6} + \frac{10584025890254392055593806226106483852}{152970499338580414732511056113098813591} a^{5} + \frac{25876098174179661021555874579229833946}{152970499338580414732511056113098813591} a^{4} + \frac{2919743615075526459594835842082997473}{152970499338580414732511056113098813591} a^{3} + \frac{36501752402769291957619696949172989469}{152970499338580414732511056113098813591} a^{2} - \frac{2613357022728331214585988700037163947}{152970499338580414732511056113098813591} a + \frac{2768130693557608562053177628126857903}{6650891275590452814457002439699948417}$
Class group and class number
$C_{110}$, which has order $110$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{179720378759538075067534692439}{316197823681749417055467362532011} a^{19} + \frac{12548030233678086492588955826}{7353437760040684117569008430977} a^{18} - \frac{5386891607877618142931013239624}{316197823681749417055467362532011} a^{17} + \frac{8790703978803731188997027121878}{316197823681749417055467362532011} a^{16} - \frac{1997639069745745110703628488451}{7353437760040684117569008430977} a^{15} + \frac{125412756841709073866519603131112}{316197823681749417055467362532011} a^{14} - \frac{73998510109495670562600512302041}{28745256698340856095951578412001} a^{13} + \frac{784688637293657157325132848832979}{316197823681749417055467362532011} a^{12} - \frac{4798190949323326995402287091136261}{316197823681749417055467362532011} a^{11} + \frac{4649999655085882496850484904094374}{316197823681749417055467362532011} a^{10} - \frac{391972061199894100219930446156298}{7353437760040684117569008430977} a^{9} + \frac{10744551509192134933784502210766940}{316197823681749417055467362532011} a^{8} - \frac{32162490085033668709847609726779514}{316197823681749417055467362532011} a^{7} + \frac{24614688872754888608874850738175608}{316197823681749417055467362532011} a^{6} - \frac{32336575265557732863590896484805636}{316197823681749417055467362532011} a^{5} + \frac{10579250179878057361861475012524979}{316197823681749417055467362532011} a^{4} - \frac{6842732435560006665102067623000752}{316197823681749417055467362532011} a^{3} + \frac{941312537024386535235012407050882}{316197823681749417055467362532011} a^{2} - \frac{1198549088481701462790865674974689}{316197823681749417055467362532011} a + \frac{11337083728432291593459133452962}{13747731464423887698063798370957} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2015201.7242 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{13})\), \(\Q(\zeta_{11})^+\), 10.0.19340358336761319.3, 10.10.79589952003133.1, 10.0.52089208083.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $13$ | 13.10.5.1 | $x^{10} - 676 x^{6} + 114244 x^{2} - 13366548$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 13.10.5.1 | $x^{10} - 676 x^{6} + 114244 x^{2} - 13366548$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |