Normalized defining polynomial
\( x^{20} - 6 x^{19} - 9 x^{18} + 108 x^{17} + 26 x^{16} - 1220 x^{15} + 1416 x^{14} + 5050 x^{13} - 8760 x^{12} - 18634 x^{11} + 60110 x^{10} - 34470 x^{9} - 71994 x^{8} + 135816 x^{7} + 8409 x^{6} - 349100 x^{5} + 806930 x^{4} - 839814 x^{3} + 332021 x^{2} - 294146 x + 971137 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37355077379825360472500371060108034048=2^{30}\cdot 17^{13}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{34} a^{16} - \frac{5}{34} a^{15} - \frac{4}{17} a^{14} + \frac{1}{34} a^{13} - \frac{1}{2} a^{12} - \frac{11}{34} a^{11} + \frac{1}{34} a^{10} + \frac{3}{34} a^{9} - \frac{1}{17} a^{8} + \frac{7}{34} a^{7} + \frac{3}{17} a^{6} + \frac{1}{17} a^{5} - \frac{15}{34} a^{3} + \frac{5}{34} a^{2} - \frac{7}{34} a + \frac{6}{17}$, $\frac{1}{34} a^{17} + \frac{1}{34} a^{15} - \frac{5}{34} a^{14} - \frac{6}{17} a^{13} + \frac{3}{17} a^{12} + \frac{7}{17} a^{11} + \frac{4}{17} a^{10} + \frac{13}{34} a^{9} - \frac{3}{34} a^{8} + \frac{7}{34} a^{7} - \frac{1}{17} a^{6} + \frac{5}{17} a^{5} - \frac{15}{34} a^{4} - \frac{1}{17} a^{3} - \frac{8}{17} a^{2} + \frac{11}{34} a - \frac{4}{17}$, $\frac{1}{306} a^{18} + \frac{1}{153} a^{17} - \frac{2}{153} a^{16} - \frac{7}{34} a^{15} - \frac{101}{306} a^{14} - \frac{19}{102} a^{13} - \frac{4}{153} a^{12} + \frac{1}{51} a^{11} + \frac{7}{306} a^{10} - \frac{77}{306} a^{9} + \frac{31}{153} a^{8} + \frac{11}{306} a^{7} - \frac{25}{102} a^{6} + \frac{131}{306} a^{5} - \frac{16}{153} a^{4} - \frac{13}{306} a^{3} - \frac{131}{306} a^{2} - \frac{1}{153} a + \frac{77}{306}$, $\frac{1}{3397717651018728483249608803040304263531928362767573602} a^{19} - \frac{2708273335096521933714529931582775425357922855670415}{1698858825509364241624804401520152131765964181383786801} a^{18} - \frac{22259624720237172734642586390913028589790349320673477}{1698858825509364241624804401520152131765964181383786801} a^{17} + \frac{620364505325989449093302304421649760542439149533039}{188762091723262693513867155724461347973996020153754089} a^{16} + \frac{518069777539147711874960431855038122876510642659914067}{3397717651018728483249608803040304263531928362767573602} a^{15} + \frac{220533625618837813248824153393585824781816716478466154}{566286275169788080541601467173384043921988060461262267} a^{14} - \frac{1375660676654852856253073669849790893146848647397318635}{3397717651018728483249608803040304263531928362767573602} a^{13} + \frac{14603332055769802096299846696174475571186786240910745}{566286275169788080541601467173384043921988060461262267} a^{12} - \frac{1525840015247184492631359722532111054801676437832330205}{3397717651018728483249608803040304263531928362767573602} a^{11} - \frac{1323409189913133830164469175288211959540752514937508663}{3397717651018728483249608803040304263531928362767573602} a^{10} + \frac{222107721507791867847049706767468739456626258535676931}{1698858825509364241624804401520152131765964181383786801} a^{9} + \frac{849310491899524259522855993326231332894329644402055671}{1698858825509364241624804401520152131765964181383786801} a^{8} + \frac{104139311814146786205442271555061604978826600676880876}{566286275169788080541601467173384043921988060461262267} a^{7} + \frac{452496134438970206800218775692948887682873142187136439}{1698858825509364241624804401520152131765964181383786801} a^{6} - \frac{56047480134818471204053879409648975030838890129644546}{1698858825509364241624804401520152131765964181383786801} a^{5} - \frac{833888395862672018225203106188680116676284067290249947}{3397717651018728483249608803040304263531928362767573602} a^{4} + \frac{379985400172572109476140136038301585117550714959580376}{1698858825509364241624804401520152131765964181383786801} a^{3} + \frac{24802647893134381504139881466199004748520916086707336}{1698858825509364241624804401520152131765964181383786801} a^{2} + \frac{147389761464169664336691282031011536802169870649427599}{3397717651018728483249608803040304263531928362767573602} a - \frac{110831961911152209630313258699140732950499570309838087}{377524183446525387027734311448922695947992040307508178}$
Class group and class number
$C_{4}\times C_{20}$, which has order $80$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 431927236.362 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:F_5$ (as 20T19):
| A solvable group of order 80 |
| The 14 conjugacy class representatives for $C_2^2:F_5$ |
| Character table for $C_2^2:F_5$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.1088.2, 5.5.6725897.1, 10.10.1482348640816627712.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $37$ | 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |