Normalized defining polynomial
\( x^{20} - x^{19} - 2 x^{18} - 11 x^{17} + 54 x^{16} - 28 x^{15} + 63 x^{14} - 158 x^{13} + 317 x^{12} - 264 x^{11} + 852 x^{10} - 323 x^{9} + 986 x^{8} - 413 x^{7} + 2414 x^{6} - 1452 x^{5} + 5813 x^{4} - 2026 x^{3} + 6579 x^{2} - 1020 x + 2075 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(371458280474198465736072578229=3^{16}\cdot 29^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{11} + \frac{1}{10} a^{10} + \frac{1}{5} a^{9} - \frac{1}{2} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{3}{10} a^{5} + \frac{1}{10} a^{3} - \frac{2}{5} a^{2} - \frac{3}{10} a$, $\frac{1}{10} a^{12} + \frac{1}{10} a^{10} - \frac{1}{5} a^{9} + \frac{1}{10} a^{8} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} + \frac{1}{10} a^{2} - \frac{1}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{13} + \frac{1}{5} a^{10} - \frac{1}{10} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{3}{10} a^{6} + \frac{2}{5} a^{5} - \frac{1}{2} a^{4} - \frac{3}{10} a^{2} + \frac{3}{10} a$, $\frac{1}{20} a^{14} - \frac{1}{20} a^{11} + \frac{1}{20} a^{10} + \frac{1}{5} a^{9} - \frac{1}{2} a^{8} - \frac{3}{10} a^{7} + \frac{3}{10} a^{6} + \frac{1}{5} a^{5} - \frac{1}{4} a^{4} - \frac{3}{10} a^{3} - \frac{1}{2} a^{2} - \frac{1}{20} a - \frac{1}{4}$, $\frac{1}{20} a^{15} - \frac{1}{20} a^{12} - \frac{1}{20} a^{11} + \frac{1}{10} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{3}{10} a^{7} + \frac{1}{10} a^{6} - \frac{9}{20} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{7}{20} a^{2} - \frac{9}{20} a - \frac{1}{2}$, $\frac{1}{580} a^{16} + \frac{3}{580} a^{15} + \frac{1}{145} a^{14} - \frac{9}{580} a^{13} - \frac{6}{145} a^{12} + \frac{1}{580} a^{11} + \frac{13}{290} a^{10} - \frac{1}{290} a^{9} + \frac{9}{145} a^{8} - \frac{17}{290} a^{7} - \frac{259}{580} a^{6} - \frac{197}{580} a^{5} + \frac{13}{58} a^{4} + \frac{113}{580} a^{3} - \frac{19}{290} a^{2} + \frac{117}{580} a - \frac{5}{29}$, $\frac{1}{580} a^{17} - \frac{1}{116} a^{15} + \frac{2}{145} a^{14} + \frac{3}{580} a^{13} + \frac{3}{116} a^{12} - \frac{3}{290} a^{11} - \frac{109}{580} a^{10} - \frac{4}{145} a^{9} + \frac{9}{58} a^{8} + \frac{249}{580} a^{7} + \frac{1}{5} a^{6} + \frac{83}{580} a^{5} + \frac{5}{29} a^{4} - \frac{9}{20} a^{3} - \frac{117}{580} a^{2} - \frac{37}{290} a + \frac{31}{116}$, $\frac{1}{2900} a^{18} + \frac{1}{2900} a^{17} + \frac{1}{2900} a^{16} - \frac{2}{725} a^{15} + \frac{16}{725} a^{14} + \frac{11}{1450} a^{13} + \frac{63}{1450} a^{12} - \frac{109}{2900} a^{11} + \frac{7}{58} a^{10} - \frac{259}{1450} a^{9} + \frac{1251}{2900} a^{8} + \frac{1031}{2900} a^{7} + \frac{849}{2900} a^{6} + \frac{149}{725} a^{5} + \frac{59}{290} a^{4} - \frac{53}{1450} a^{3} - \frac{717}{1450} a^{2} - \frac{1}{4} a + \frac{23}{58}$, $\frac{1}{532846401215418197359400} a^{19} + \frac{160094818077501113}{1837401383501442059860} a^{18} - \frac{44043136337196045263}{53284640121541819735940} a^{17} + \frac{206925251423853315991}{532846401215418197359400} a^{16} + \frac{4952410289744288935987}{532846401215418197359400} a^{15} - \frac{7415136901205517863567}{532846401215418197359400} a^{14} - \frac{2801990408012459880549}{133211600303854549339850} a^{13} - \frac{2044014115879885191911}{53284640121541819735940} a^{12} + \frac{6250554336566035214889}{532846401215418197359400} a^{11} - \frac{4294970747668628086427}{18374013835014420598600} a^{10} - \frac{22475897507561732733461}{532846401215418197359400} a^{9} - \frac{97931671167415647831}{207333230044909804420} a^{8} - \frac{115425823000937329987251}{266423200607709098679700} a^{7} - \frac{3461189670154621555147}{18374013835014420598600} a^{6} - \frac{8804488683161345565831}{532846401215418197359400} a^{5} - \frac{203684035091044739084021}{532846401215418197359400} a^{4} + \frac{23931041674229821701514}{66605800151927274669925} a^{3} + \frac{73182627369887621726997}{266423200607709098679700} a^{2} - \frac{4602885826171004045941}{106569280243083639471880} a + \frac{3726555229819339947275}{21313856048616727894376}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4795512.92142 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.0.24389.1, 5.1.1975509.1 x5, 10.2.113176438463349.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.1975509.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $29$ | 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |