Properties

Label 20.0.36996107835...0000.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{46}\cdot 5^{12}\cdot 7^{4}\cdot 8969$
Root discriminant $30.09$
Ramified primes $2, 5, 7, 8969$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T925

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![28, -40, 10, 80, -135, 88, -100, -160, 450, -40, -230, 0, 115, 0, -40, 0, 30, 0, -10, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^18 + 30*x^16 - 40*x^14 + 115*x^12 - 230*x^10 - 40*x^9 + 450*x^8 - 160*x^7 - 100*x^6 + 88*x^5 - 135*x^4 + 80*x^3 + 10*x^2 - 40*x + 28)
 
gp: K = bnfinit(x^20 - 10*x^18 + 30*x^16 - 40*x^14 + 115*x^12 - 230*x^10 - 40*x^9 + 450*x^8 - 160*x^7 - 100*x^6 + 88*x^5 - 135*x^4 + 80*x^3 + 10*x^2 - 40*x + 28, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{18} + 30 x^{16} - 40 x^{14} + 115 x^{12} - 230 x^{10} - 40 x^{9} + 450 x^{8} - 160 x^{7} - 100 x^{6} + 88 x^{5} - 135 x^{4} + 80 x^{3} + 10 x^{2} - 40 x + 28 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(369961078353821696000000000000=2^{46}\cdot 5^{12}\cdot 7^{4}\cdot 8969\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $30.09$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7, 8969$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{20} a^{12} - \frac{1}{10} a^{11} - \frac{2}{5} a^{9} - \frac{7}{20} a^{8} - \frac{1}{10} a^{7} + \frac{7}{20} a^{4} + \frac{3}{10} a^{3} - \frac{3}{10} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{20} a^{13} - \frac{1}{5} a^{11} + \frac{1}{10} a^{10} - \frac{3}{20} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{2} a^{6} + \frac{7}{20} a^{5} + \frac{3}{10} a^{3} - \frac{3}{10} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{20} a^{14} + \frac{1}{5} a^{11} - \frac{3}{20} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{7}{20} a^{6} - \frac{3}{10} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{20} a^{15} - \frac{1}{4} a^{11} + \frac{1}{10} a^{10} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{3}{10} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{5}$, $\frac{1}{20} a^{16} + \frac{1}{10} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{3}{10} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{5} a$, $\frac{1}{20} a^{17} + \frac{1}{5} a^{11} + \frac{3}{10} a^{9} + \frac{1}{5} a^{8} - \frac{1}{10} a^{7} + \frac{1}{4} a^{5} - \frac{1}{5} a^{4} - \frac{1}{10} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{100} a^{18} - \frac{1}{100} a^{17} + \frac{1}{50} a^{16} + \frac{1}{50} a^{15} + \frac{1}{50} a^{13} - \frac{1}{50} a^{12} + \frac{6}{25} a^{11} - \frac{3}{50} a^{10} + \frac{2}{5} a^{9} + \frac{1}{25} a^{8} - \frac{17}{50} a^{7} + \frac{33}{100} a^{6} + \frac{33}{100} a^{5} + \frac{1}{10} a^{4} + \frac{9}{25} a^{3} - \frac{9}{25} a^{2} - \frac{12}{25} a - \frac{2}{25}$, $\frac{1}{212635710390500} a^{19} - \frac{228794700707}{53158927597625} a^{18} - \frac{825242960501}{212635710390500} a^{17} + \frac{2794193057}{53158927597625} a^{16} - \frac{3050163239579}{212635710390500} a^{15} + \frac{4707279984337}{212635710390500} a^{14} - \frac{911618412063}{106317855195250} a^{13} - \frac{350281179311}{106317855195250} a^{12} - \frac{622870137519}{212635710390500} a^{11} - \frac{4407059454893}{212635710390500} a^{10} - \frac{46517231774713}{106317855195250} a^{9} + \frac{9972157669169}{106317855195250} a^{8} - \frac{15767851321541}{53158927597625} a^{7} + \frac{56589849769857}{212635710390500} a^{6} + \frac{32006370022529}{212635710390500} a^{5} + \frac{21816470120169}{53158927597625} a^{4} + \frac{11401142815978}{53158927597625} a^{3} - \frac{13689813984953}{106317855195250} a^{2} + \frac{24427638488657}{53158927597625} a + \frac{3446385260844}{53158927597625}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9418559.26658 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T925:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 409600
The 190 conjugacy class representatives for t20n925 are not computed
Character table for t20n925 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 10.2.6422528000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ R R ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ $20$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.8.20.4$x^{8} + 72 x^{4} + 656$$4$$2$$20$$Q_8:C_2$$[2, 3, 7/2]^{2}$
2.8.20.4$x^{8} + 72 x^{4} + 656$$4$$2$$20$$Q_8:C_2$$[2, 3, 7/2]^{2}$
$5$5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$7$$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.8.0.1$x^{8} - x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
8969Data not computed