\\ Pari/GP code for working with number field 20.0.369139687194512130048.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^20 - 7*y^19 + 26*y^18 - 64*y^17 + 116*y^16 - 153*y^15 + 128*y^14 - 4*y^13 - 199*y^12 + 398*y^11 - 478*y^10 + 372*y^9 - 118*y^8 - 158*y^7 + 328*y^6 - 344*y^5 + 249*y^4 - 129*y^3 + 46*y^2 - 10*y + 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^20 - 7*x^19 + 26*x^18 - 64*x^17 + 116*x^16 - 153*x^15 + 128*x^14 - 4*x^13 - 199*x^12 + 398*x^11 - 478*x^10 + 372*x^9 - 118*x^8 - 158*x^7 + 328*x^6 - 344*x^5 + 249*x^4 - 129*x^3 + 46*x^2 - 10*x + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])