Normalized defining polynomial
\( x^{20} - 7 x^{19} + 26 x^{18} - 64 x^{17} + 116 x^{16} - 153 x^{15} + 128 x^{14} - 4 x^{13} - 199 x^{12} + 398 x^{11} - 478 x^{10} + 372 x^{9} - 118 x^{8} - 158 x^{7} + 328 x^{6} - 344 x^{5} + 249 x^{4} - 129 x^{3} + 46 x^{2} - 10 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(369139687194512130048=2^{16}\cdot 3^{10}\cdot 157^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{31} a^{18} - \frac{1}{31} a^{17} - \frac{5}{31} a^{16} - \frac{7}{31} a^{15} + \frac{13}{31} a^{14} + \frac{7}{31} a^{13} + \frac{7}{31} a^{11} - \frac{2}{31} a^{10} - \frac{6}{31} a^{9} + \frac{1}{31} a^{8} + \frac{1}{31} a^{7} - \frac{13}{31} a^{6} - \frac{13}{31} a^{5} - \frac{14}{31} a^{4} - \frac{10}{31} a^{3} + \frac{12}{31} a^{2} + \frac{7}{31} a + \frac{5}{31}$, $\frac{1}{5053} a^{19} - \frac{54}{5053} a^{18} - \frac{696}{5053} a^{17} + \frac{537}{5053} a^{16} + \frac{1283}{5053} a^{15} - \frac{73}{163} a^{14} - \frac{1580}{5053} a^{13} + \frac{906}{5053} a^{12} - \frac{2357}{5053} a^{11} + \frac{2456}{5053} a^{10} + \frac{1776}{5053} a^{9} + \frac{2149}{5053} a^{8} + \frac{1732}{5053} a^{7} + \frac{1079}{5053} a^{6} + \frac{2101}{5053} a^{5} - \frac{1128}{5053} a^{4} - \frac{2155}{5053} a^{3} + \frac{2378}{5053} a^{2} + \frac{750}{5053} a - \frac{2497}{5053}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{92}{31} a^{19} - \frac{627}{31} a^{18} + \frac{2307}{31} a^{17} - \frac{5626}{31} a^{16} + \frac{10118}{31} a^{15} - \frac{13131}{31} a^{14} + \frac{10639}{31} a^{13} + \frac{551}{31} a^{12} - \frac{18282}{31} a^{11} + \frac{35176}{31} a^{10} - \frac{40966}{31} a^{9} + \frac{30588}{31} a^{8} - \frac{7714}{31} a^{7} - \frac{15910}{31} a^{6} + \frac{29382}{31} a^{5} - \frac{29235}{31} a^{4} + \frac{20032}{31} a^{3} - \frac{9527}{31} a^{2} + \frac{2853}{31} a - \frac{381}{31} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 182.345344476 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2$ (as 20T48):
| A solvable group of order 200 |
| The 14 conjugacy class representatives for $D_5\wr C_2$ |
| Character table for $D_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.1413.1, 10.0.1533364992.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 157 | Data not computed | ||||||