Normalized defining polynomial
\( x^{20} + 40 x^{18} + 950 x^{16} - 2 x^{15} + 15520 x^{14} + 90 x^{13} + 189475 x^{12} + 1500 x^{11} + 1772491 x^{10} + 20230 x^{9} + 12766770 x^{8} + 119100 x^{7} + 69614025 x^{6} + 220760 x^{5} + 274337325 x^{4} - 2516900 x^{3} + 709001375 x^{2} - 16634750 x + 914911255 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36905625000000000000000000000000000000=2^{30}\cdot 3^{10}\cdot 5^{34}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(600=2^{3}\cdot 3\cdot 5^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{600}(1,·)$, $\chi_{600}(389,·)$, $\chi_{600}(481,·)$, $\chi_{600}(269,·)$, $\chi_{600}(461,·)$, $\chi_{600}(529,·)$, $\chi_{600}(341,·)$, $\chi_{600}(409,·)$, $\chi_{600}(221,·)$, $\chi_{600}(581,·)$, $\chi_{600}(289,·)$, $\chi_{600}(101,·)$, $\chi_{600}(49,·)$, $\chi_{600}(169,·)$, $\chi_{600}(29,·)$, $\chi_{600}(241,·)$, $\chi_{600}(361,·)$, $\chi_{600}(121,·)$, $\chi_{600}(509,·)$, $\chi_{600}(149,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{707} a^{18} + \frac{249}{707} a^{17} + \frac{142}{707} a^{16} - \frac{243}{707} a^{15} + \frac{304}{707} a^{14} + \frac{11}{101} a^{13} + \frac{38}{101} a^{12} + \frac{237}{707} a^{11} - \frac{187}{707} a^{10} - \frac{335}{707} a^{9} + \frac{162}{707} a^{8} + \frac{328}{707} a^{7} - \frac{18}{101} a^{6} + \frac{15}{101} a^{5} + \frac{320}{707} a^{4} + \frac{3}{101} a^{3} + \frac{27}{707} a^{2} - \frac{33}{707} a + \frac{200}{707}$, $\frac{1}{225750894272440855807356226577426449684481122644184148523686407} a^{19} - \frac{13968704660097306320591011701749240739247238482002764026708}{225750894272440855807356226577426449684481122644184148523686407} a^{18} - \frac{49945539324334387902769757828304640400698071887598914001157709}{225750894272440855807356226577426449684481122644184148523686407} a^{17} + \frac{80379203869197818763648007801956007497896967400296907277253911}{225750894272440855807356226577426449684481122644184148523686407} a^{16} - \frac{40738973209809071773041115280606811948774837047869340730149922}{225750894272440855807356226577426449684481122644184148523686407} a^{15} + \frac{7497391041032923575063981604153188039450967744315100632502776}{32250127753205836543908032368203778526354446092026306931955201} a^{14} + \frac{11854108272333416732521796765109405284490969238303788620644821}{32250127753205836543908032368203778526354446092026306931955201} a^{13} - \frac{17960173439289111726225109573268594365555415819917188967711986}{225750894272440855807356226577426449684481122644184148523686407} a^{12} + \frac{41736065424248405526524040046429541598139688598685650013705324}{225750894272440855807356226577426449684481122644184148523686407} a^{11} + \frac{52829683792223101634541828103306063999706549341151662232260358}{225750894272440855807356226577426449684481122644184148523686407} a^{10} + \frac{41159514586091573717983465270283741183549561572694844347324684}{225750894272440855807356226577426449684481122644184148523686407} a^{9} - \frac{6128140616570217321519420298727731144996366492090512676947359}{225750894272440855807356226577426449684481122644184148523686407} a^{8} + \frac{14406099735157770051834284106654963978028007858390132779048119}{32250127753205836543908032368203778526354446092026306931955201} a^{7} + \frac{6407501525950393001743149826857222597215892770052804638923971}{32250127753205836543908032368203778526354446092026306931955201} a^{6} - \frac{53651814246058330125561985536391196487962843810932358695252942}{225750894272440855807356226577426449684481122644184148523686407} a^{5} + \frac{12908674663098709920240204569458199690120966804963926598673506}{32250127753205836543908032368203778526354446092026306931955201} a^{4} + \frac{12949669692191603604108493800583741701234660966932123787934818}{225750894272440855807356226577426449684481122644184148523686407} a^{3} + \frac{98832942874059510591065167908389765976294235381771205019610548}{225750894272440855807356226577426449684481122644184148523686407} a^{2} - \frac{109209698901821592495381801639946690567254618323628190791527349}{225750894272440855807356226577426449684481122644184148523686407} a + \frac{4823043612422350792174670338788600420145901159057069709498428}{32250127753205836543908032368203778526354446092026306931955201}$
Class group and class number
$C_{264620}$, which has order $264620$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.837641 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{5}, \sqrt{-6})\), 5.5.390625.1, \(\Q(\zeta_{25})^+\), 10.0.1215000000000000000.45, 10.0.6075000000000000000.26 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.10.17.1 | $x^{10} - 5 x^{8} + 5$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.1 | $x^{10} - 5 x^{8} + 5$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |