Normalized defining polynomial
\( x^{20} - 8 x^{19} + 81 x^{18} - 432 x^{17} + 2847 x^{16} - 12358 x^{15} + 66113 x^{14} - 246419 x^{13} + 1126555 x^{12} - 3621581 x^{11} + 14321274 x^{10} - 39343938 x^{9} + 134662880 x^{8} - 309045225 x^{7} + 905756590 x^{6} - 1655398135 x^{5} + 4065065252 x^{4} - 5362253828 x^{3} + 10684140682 x^{2} - 7849045071 x + 12117934841 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(367790023196388722242846533993759765625=5^{10}\cdot 11^{16}\cdot 31^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1705=5\cdot 11\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1705}(1024,·)$, $\chi_{1705}(1,·)$, $\chi_{1705}(774,·)$, $\chi_{1705}(1611,·)$, $\chi_{1705}(1549,·)$, $\chi_{1705}(526,·)$, $\chi_{1705}(1489,·)$, $\chi_{1705}(466,·)$, $\chi_{1705}(1301,·)$, $\chi_{1705}(1241,·)$, $\chi_{1705}(991,·)$, $\chi_{1705}(929,·)$, $\chi_{1705}(619,·)$, $\chi_{1705}(1644,·)$, $\chi_{1705}(621,·)$, $\chi_{1705}(559,·)$, $\chi_{1705}(1456,·)$, $\chi_{1705}(309,·)$, $\chi_{1705}(1334,·)$, $\chi_{1705}(311,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{36079} a^{18} + \frac{2108}{36079} a^{17} + \frac{6495}{36079} a^{16} - \frac{4305}{36079} a^{15} - \frac{7932}{36079} a^{14} - \frac{1174}{36079} a^{13} - \frac{4569}{36079} a^{12} - \frac{8806}{36079} a^{11} + \frac{9263}{36079} a^{10} - \frac{246}{36079} a^{9} - \frac{10340}{36079} a^{8} - \frac{4501}{36079} a^{7} - \frac{9528}{36079} a^{6} - \frac{335}{36079} a^{5} + \frac{14561}{36079} a^{4} - \frac{12860}{36079} a^{3} + \frac{14154}{36079} a^{2} + \frac{35}{109} a - \frac{12537}{36079}$, $\frac{1}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{19} - \frac{332956237259127521116071497269685450777660908234086619763986577410}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{18} + \frac{27261757917897697889471357216686923818347556341046403010657879620890985}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{17} - \frac{11427416640488621715811842228602856072092515359918955938181503115392749}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{16} - \frac{26898875932109455272262368902243293873770195355948637696608265217269297}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{15} + \frac{4063496350391779623319538796417050315734364922093209142970733611125958}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{14} - \frac{3895350368631139011032436458037139880376959969182614195339149311494873}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{13} - \frac{1339186172567210000071357577281114795117921754760414942698941988517447}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{12} - \frac{8742736112642604121460661458547894072756380899367220076891297261846457}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{11} - \frac{24709474012229581282293183332468073768949464117739046289964145481645924}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{10} - \frac{17779847903953127733973617102361357119887995205197875343793789364544494}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{9} + \frac{22453430711794348367671741913777424994161707004276935117139420962561118}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{8} - \frac{19800523736135669245421603796628565514672586321301832159921447526907890}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{7} - \frac{15977513421234703825610671049762856861522423774752744940878680025479840}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{6} - \frac{3165474841772203179848705032413896536318248894597471090637145106114968}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{5} - \frac{20825646708298036232634861776638269134160701849577556024762844173478953}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{4} + \frac{19295944594780365234267282684341629158620664633624149173571963532155973}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{3} + \frac{21452770177795001310918786057135246894851876784426964503373463874411267}{54743777367199368656192860267304745668892867244540942406742788951807309} a^{2} + \frac{353524502494645265410363371709766321759322982148798027364904199740757}{1273111101562776015260299075983831294625415517314905637366111370972263} a + \frac{5827088126630020360721962750067292361118190858314406236482801587110735}{54743777367199368656192860267304745668892867244540942406742788951807309}$
Class group and class number
$C_{387066}$, which has order $387066$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{-155}) \), \(\Q(\sqrt{5}, \sqrt{-31})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.6136912772340031.1, 10.0.19177852413562596875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $31$ | 31.10.5.2 | $x^{10} - 923521 x^{2} + 286291510$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 31.10.5.2 | $x^{10} - 923521 x^{2} + 286291510$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |