Normalized defining polynomial
\( x^{20} - 8 x^{19} + 101 x^{18} - 576 x^{17} + 4535 x^{16} - 21030 x^{15} + 129865 x^{14} - 511863 x^{13} + 2652441 x^{12} - 8957981 x^{11} + 39843720 x^{10} - 114345518 x^{9} + 438995984 x^{8} - 1046061945 x^{7} + 3446562112 x^{6} - 6502554995 x^{5} + 18098949794 x^{4} - 24494214376 x^{3} + 56142388702 x^{2} - 41930249223 x + 76208864731 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3652826763616533724927636470896103515625=3^{10}\cdot 5^{10}\cdot 11^{16}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2145=3\cdot 5\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2145}(896,·)$, $\chi_{2145}(1,·)$, $\chi_{2145}(196,·)$, $\chi_{2145}(389,·)$, $\chi_{2145}(584,·)$, $\chi_{2145}(586,·)$, $\chi_{2145}(779,·)$, $\chi_{2145}(1676,·)$, $\chi_{2145}(1871,·)$, $\chi_{2145}(1169,·)$, $\chi_{2145}(2066,·)$, $\chi_{2145}(1171,·)$, $\chi_{2145}(664,·)$, $\chi_{2145}(1754,·)$, $\chi_{2145}(859,·)$, $\chi_{2145}(1054,·)$, $\chi_{2145}(1951,·)$, $\chi_{2145}(1444,·)$, $\chi_{2145}(2029,·)$, $\chi_{2145}(311,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{331} a^{18} + \frac{122}{331} a^{17} - \frac{107}{331} a^{16} - \frac{36}{331} a^{15} - \frac{83}{331} a^{14} + \frac{147}{331} a^{13} + \frac{70}{331} a^{12} + \frac{46}{331} a^{11} + \frac{138}{331} a^{10} - \frac{67}{331} a^{9} + \frac{138}{331} a^{8} - \frac{34}{331} a^{7} + \frac{151}{331} a^{6} - \frac{65}{331} a^{5} - \frac{95}{331} a^{4} - \frac{72}{331} a^{3} + \frac{4}{331} a^{2} + \frac{21}{331} a + \frac{149}{331}$, $\frac{1}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{19} + \frac{25269925934931451209119296826431942127029310754645544387954188907244964952}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{18} - \frac{485325253714218669860358881631837369762676337595680162491448164408858094863}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{17} + \frac{11674347857614436678816323920254852237558489744839817369152748717646459283659}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{16} - \frac{9396503300394381649195217333411587505326337660246670789748681425528751704046}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{15} + \frac{16987488194017769932855663578726378780091675250323314126584645642205767227062}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{14} - \frac{8931231001173742295374981390337999752944811715502363227645798195478637711060}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{13} - \frac{19799075174965494714930947433453055226940339440636894039084494049370000828904}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{12} + \frac{345180854694618687595149216327326457220062454049958193052086696222109600467}{741494887514256346655301394532892144893432125839097903993483713167882429147} a^{11} + \frac{20079018420665823056518894409743458319329036065568331165495849100205246205179}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{10} - \frac{23334455012247020135205310600614348124681238987930242484535983080921390886753}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{9} - \frac{7618533655196708276380873383852278281993385799547268880838551591368578836984}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{8} + \frac{15828212011203144819644190251450443031833538096618597423500306846697029982478}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{7} - \frac{8489435557062664395982514585665150762949545016128303769580164205281185989808}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{6} - \frac{1387883835786197034903941290774644303675756830666753597569018265167438952}{32238908152793754202404408457951832386670961993004256695368857094255757789} a^{5} + \frac{4437697476820416581497139901987955324533065348002689950602570889198446886651}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{4} + \frac{14661797788288145317933598123842196081077147909863009477110761394548967307659}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{3} - \frac{21939276260604407198210123921223764179800824661642505335095189187167815799193}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a^{2} + \frac{15413717027449283777613872703508130643727940772928886090559469065910659879174}{49680157463455175225905193433703773707859952431219559567563408782248122752849} a - \frac{13088540179590484325823928040381761549309240615452316834641580720472764285082}{49680157463455175225905193433703773707859952431219559567563408782248122752849}$
Class group and class number
$C_{5}\times C_{361240}$, which has order $1806200$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-195}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-39})\), \(\Q(\zeta_{11})^+\), 10.0.60438619802379121875.1, 10.0.19340358336761319.3, 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 13 | Data not computed | ||||||